Zero-Shot Deep Domain Adaptation

  • Abstract
  • Introduction
  • Related work
  • Our Proposed Method — ZDDA
    • Domain adaptation

Reference[原文]: Joselynzhao.top & 夏木青 | Zero-Shot Deep Domain Adaptation

Abstract

Domain adaptation(域适应) is an important tool to transfer knowledge about a task.

Current approaches:
假设 task-relevant target-domain数据在训练期间是可用的。
而我们展示了如何在 上述数据不可用的情况下实现 Domain adaptation的

为了解决这个问题,我们提出了zero-shot deep domain adaptation (ZDDA)

使用来自 任务无关的双领域对 的 特权信息, 学习一个源领域的表示,不仅适合于兴趣任务,还接近于目标域的表达。

联合源领域表达训练的 源领域解决方法 可以使用 源表达和目标表达。

数据集:
Using the MNIST, FashionMNIST, NIST, EMNIST, and SUN RGB-D datasets

效果
可以在不是访问 任务相关目标域训练数据的情况下,实现分类任务的域适应。
我们还通过模拟与任务相关的源域数据的任务相关目标域表示,扩展ZDDA以在SUN RGB-D场景分类任务中执行传感器融合

ZDDA是第一个域适应和传感器融合方法,它不需要任务相关的目标域数据。
基本原则并不特定于计算机视觉数据,但应该可扩展到其他领域。

Introduction

domain shift[17] 会导致将解决方法转移到另外领域时的性能下降。
DA任务的目标是为源域和目标域导出TOI的解决方案。

The state-of-the-art DA methods: [1, 14–16, 25, 30, 35, 37, 39–41, 43,44, 47, 50] 假设任务相关数据,可以直接应用和关系到TOI,在训练时在目标域可用。但这些假设在真实情况下往往不是这样的。

sensor fusion [31,48]

ZDDA learns from the task-irrelevant dual-domain training pairs without using the task-relevant target-domain training data, where we use the term task-irrelevant data to refer to the data which is not task-relevant. # 任务不相关
在后文中,我们用T-R表示任务相关,用T_I表示任务无关。


图一 :当任务相关的目标域训练数据不可用时,ZDDA从与任务无关的双域对中学习。

这个图没有太明白

DA task MNIST [27]→MNIST-M [13],source domian 灰度模式,target domain RGB模式
TOI: 在MNIST[27]和[13]做测试的数字分类。
假设不能会用MNIST[13]来训练数据

在例子中:
ZDDA 使用 MNIST [27] training data and
the T-I gray-RGB pairs from the Fashion-MNIST [46] dataset and the Fashion-MNIST-M dataset to train digit classifiers for MNIST [27] and MNIST-M [13] images。

ZDDA achieves this by 使用灰度模式图像 模拟 the RGB 表达
and 创建联合网络 with the supervision of the TOI in the gray scale
domain. We present the details of ZDDA in Sec. 3.
We make the following two contributions

  • ZDDA, 第一个基于深度学习的 域适应 方法,从一个图像形态到另一个不同的图像形态 (not just different datasets in the same modality such as the
    Office dataset [32]) without using the task-relevant target-domain training data. We show ZDDA’s efficacy using the MNIST [27], Fashion-MNIST [46], NIST [18], EMNIST [9], and SUN RGB-D [36] datasets with cross validation.)

  • Given no task-relevant target-domain training data, we show that ZDDA
    can 执行传感器融合 and that 和a naive fusion approach 相比, ZDDA is more robust to noisy testing data in either source or target or both domains in the scene classification task from the SUN RGB-D [36] dataset.

Related work

域适应DA 被广泛地应用于计算机视觉和图像分类.[1,14–16,25,30,35,
37,39–41,43,44,47,50] 还有 语义分割[45,51]图像字幕[8].

在结合深度神经网络的情况下:
the state-of-the-art methods successfully perform DA with (fully or partially) labeled [8,15,25,30, 39] or unlabeled [1,14–16,35,37,39–41,43–45,47,50] T-R target-domain data. (最好的方法使用了 标注\部分标注\无标注 的T-R 目标域数据)

用于改善DA任务性能的策略:

  • domain adversarial loss [40] 域对抗
  • domain confusion loss[39]

大多数存在的方法都是需要T_R 目标域 训练数据. (但现实情况下,不可行)

ZDDA 在不实用T-R目标域训练数据的情况下 从T-I双域对中学习.

ZDDA包括使用源域数据模拟目标域表示,[19,21]中提到了类似的概念。但是[19,21]需要访问T-R双域训练对.

Table 1, which shows that the ZDDA problem setting is different from those of UDA, MVL, and DG.

MVL DG 给出了多个域中的T-R训练数据

但是,在ZDDA中,T-R目标域训练数据不可用,并且唯一可用的T-R训练数据在一个源域中。

only ZDDA can work under all four conditions.

在传感器融合方面:

[…]

Our Proposed Method — ZDDA

ZDDA被设计来实现两个目标:

  • Domain adaptation
  • Sensor fusion

Domain adaptation

REFERENCE

  1. Aljundi, R., Tuytelaars, T.: Lightweight unsupervised domain adaptation by convolutional filter reconstruction. In: Hua, G., J´egou, H. (eds.) ECCV 2016. LNCS,
    vol. 9915, pp. 508–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
    49409-8 43

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
    image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

  3. BAIR/BVLC: BAIR/BVLC AlexNet model. http://dl.caffe.berkeleyvision.org/
    bvlc alexnet.caffemodel. Accessed 02 March 2017

  4. BAIR/BVLC: BAIR/BVLC GoogleNet model. http://dl.caffe.berkeleyvision.org/
    bvlc googlenet.caffemodel. Accessed 02 March 2017

  5. BAIR/BVLC: Lenet architecture in the Caffe tutorial. https://github.com/BVLC/
    caffe/blob/master/examples/mnist/lenet.prototxt

  6. Blitzer, J., Foster, D.P., Kakade, S.M.: Zero-shot domain adaptation: a multi-view
    approach. In: Technical Report TTI-TR-2009-1. Technological institute Toyota
    (2009)

  7. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised
    pixel-level domain adaptation with generative adversarial networks. In: The IEEE
    Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3722–3731.
    IEEE (2017)

  8. Chen, T.H., Liao, Y.H., Chuang, C.Y., Hsu, W.T., Fu, J., Sun, M.: Show, adapt
    and tell: adversarial training of cross-domain image captioner. In: The IEEE International Conference on Computer Vision (ICCV), pp. 521–530. IEEE (2017)

  9. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: An extension of
    MNIST to handwritten letters. arXiv preprint arXiv: 1702.05373 (2017)

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale
    hierarchical image database. In: The IEEE Conference on Computer Vision and
    Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

  11. Ding, Z., Shao, M., Fu, Y.: Missing modality transfer learning via latent low-rank
    constraint. IEEE Trans. Image Proces. 24, 4322–4334 (2015)

  12. Fu, Z., Xiang, T., Kodirov, E., Gong, S.: Zero-shot object recognition by semantic
    manifold distance. In: The IEEE Conference on Computer Vision and Pattern
    Recognition (CVPR). IEEE (2015)

  13. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
    In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on
    Machine Learning (ICML-2015), vol. 37, pp. 1180–1189. PMLR (2015)

  14. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
    Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J.
    Mach. Learn. Res. (JMLR) 17(59), 1–35 (2016)

  15. Gebru, T., Hoffman, J., Li, F.F.: Fine-grained recognition in the wild: A multi-task
    domain adaptation approach. In: The IEEE International Conference on Computer
    Vision (ICCV), pp. 1349–1358. IEEE (2017)

  16. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstructionclassification networks for unsupervised domain adaptation. In: Leibe, B., Matas,
    J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613.
    Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 36

  17. Gretton, A., Smola, A.J., Huang, J., Schmittfull, M., Borgwardt, K.M., Sch¨olkopf,
    B.: Covariate shift and local learning by distribution matching, pp. 131–160. MIT
    Press, Cambridge (2009)

  18. Grother, P., Hanaoka, K.: NIST special database 19 handprinted forms and characters database. National Institute of Standards and Technology (2016)

  19. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer.
    In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
    pp. 2827–2836. IEEE (2016)

  20. Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative domain adaptation. In: The IEEE International Conference on Computer Vision (ICCV), pp.
    2765–2773. IEEE (2017)

  21. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modality hallucination. In: The IEEE Conference on Computer Vision and Pattern
    Recognition (CVPR), pp. 826–834. IEEE (2016)

  22. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
    SqueezeNet v1.1model. https://github.com/DeepScale/SqueezeNet/blob/master/
    SqueezeNet v1.1/squeezenet v1.1.caffemodel. Accessed 11 Feb 2017

  23. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
    SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model
    size. arXiv preprint arXiv: 1602.07360 (2016)

  24. Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. arXiv
    preprint arXiv: 1408.5093 (2014)

  25. Koniusz, P., Tas, Y., Porikli, F.: Domain adaptation by mixture of alignments of
    second- or higher-order scatter tensors. In: The IEEE Conference on Computer
    Vision and Pattern Recognition (CVPR), pp. 4478–4487. IEEE (2017)

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
    K.Q. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 25,
    pp. 1097–1105. Curran Associates, Inc. (2012)

  27. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
    document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

  28. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier
    domain generalization. In: The IEEE International Conference on Computer Vision
    (ICCV). IEEE (2017)

  29. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C.,
    Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in
    Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates
    Inc. (2013)

  30. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised
    domain adaptation and generalization. In: The IEEE International Conference on
    Computer Vision (ICCV), pp. 5715–5725. IEEE (2017)

  31. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep
    learning. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International
    Conference on Machine Learning (ICML-2011), pp. 689–696. Omnipress (2011)

  32. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
    new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010.
    LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.
    1007/978-3-642-15561-1 16

  33. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain
    adaptation. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International
    Conference on Machine Learning (ICML-2017), vol. 70, pp. 2988–2997. PMLR
    (2017)
    Zero-S

  34. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Lee, D.D., Sugiyama, M., Luxburg,
    U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
    Systems (NIPS), vol. 29, pp. 2110–2118. Curran Associates, Inc. (2016)

  35. Sohn, K., Liu, S., Zhong, G., Yu, X., Yang, M.H., Chandraker, M.: Unsupervised
    domain adaptation for face recognition in unlabeled videos. In: The IEEE International Conference on Computer Vision (ICCV), pp. 3210–3218. IEEE (2017)

  36. Song, S., Lichtenberg, S., Xiao, J.: SUN RGB-D: a RGB-D scene understanding benchmark suite. In: The IEEE Conference on Computer Vision and Pattern
    Recognition (CVPR), pp. 567–576. IEEE (2015)

  37. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., J´egou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450.
    Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 35

  38. Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on
    Computer Vision and Pattern Recognition (CVPR), pp. 1–9. IEEE (2015)

  39. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
    domains and tasks. In: The IEEE International Conference on Computer Vision
    (ICCV), pp. 4068–4076. IEEE (2015)

  40. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
    adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition
    (CVPR), pp. 7167–7176. IEEE (2017)

  41. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
    network for unsupervised domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5018–5027. IEEE (2017)

  42. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation
    learning. In: Bach, F., Blei, D. (eds.) Proceedings of the 32th International Conference on Machine Learning (ICML-2015), vol. 37, pp. 1083–1092. PMLR (2015)

  43. Wang, Y., Li, W., Dai, D., Gool, L.V.: Deep domain adaptation by geodesic distance minimization. In: The IEEE International Conference on Computer Vision
    (ICCV), pp. 2651–2657. IEEE (2017)

  44. Wu, C., Wen, W., Afzal, T., Zhang, Y., Chen, Y., Li, H.: A compact DNN:
    approaching GoogLeNet-level accuracy of classification and domain adaptation.
    In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
    pp. 5668–5677. IEEE (2017)

  45. Wulfmeier, M., Bewley, A., Posner, I.: Addressing appearance change in outdoor
    robotics with adversarial domain adaptation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1551–1558. IEEE (2017)

  46. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv: 1702.05374 (2017)

  47. Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias:
    Weighted maximum mean discrepancy for unsupervised domain adaptation. In:
    The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
    2272–2281. IEEE (2017)

  48. Yang, X., Ramesh, P., Chitta, R., Madhvanath, S., Bernal, E.A., Luo, J.: Deep multimodal representation learning from temporal data. In: The IEEE Conference on
    Computer Vision and Pattern Recognition (CVPR), pp. 5447–5455. IEEE (2017)

  49. Yang, Y., Hospedales, T.M.: Zero-shot domain adaptation via kernel regression on
    the grassmannian. In: Drira, H., Kurtek, S., Turaga, P. (eds.) BMVC Workshop
    on Differential Geometry in Computer Vision. BMVA Press (2015)

  50. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for
    visual domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1859–1867. IEEE (2017)

  51. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: The IEEE International Conference on Computer
    Vision (ICCV), pp. 2020–2030. IEEE (2017)

Zero-Shot Deep Domain Adaptation[reading notes]相关推荐

  1. TGRS2020/遥感:Multisource Domain Adaptation for Remote Sensing Using Deep Neural Netw基于深度神经网络的遥感多源域自适应

    TGRS2020/遥感:Multisource Domain Adaptation for Remote Sensing Using Deep Neural Networks基于深度神经网络的遥感多源 ...

  2. 遥感图像-Deep Feature Alignment Neural Networks for Domain Adaptation of Hyperspectral Data高光谱数据深度特征对齐神经

    Deep Feature Alignment Neural Networks for Domain Adaptation of Hyperspectral Data高光谱数据领域自适应的深度特征对齐神 ...

  3. cross-domin,Domain adaptation 与 Domain generalization学习

    参考: [迁移学习]Domain Adaptation系列论文解析(不断更新中) - 知乎 同任务但不同domain数据的统一模型 transfer learning 和 cross domain 有 ...

  4. 基于matlab的fisher线性判别及感知器判别_Deep Domain Adaptation论文集(一):基于label迁移知识...

    本系列简单梳理一下<Deep Visual Domain Adaptation: A Survey>这篇综述文章的内容,囊括了现在用深度网络做领域自适应DA(Domain Adaptati ...

  5. 【ICML 2015迁移学习论文阅读】Unsupervised Domain Adaptation by Backpropagation (DANN) 反向传播的无监督领域自适应

    会议:ICML 2015 论文题目:Unsupervised Domain Adaptation by Backpropagation 论文地址: http://proceedings.mlr.pre ...

  6. DANN:Unsupervised Domain Adaptation by Backpropagation

    本篇是迁移学习专栏介绍的第十三篇论文,发表在ICML15上.论文提出了用对抗的思想进行domain adaptation,该方法名叫DANN(或RevGrad).核心的问题是同时学习分类器  .特征提 ...

  7. CVPR2019:Domain-Specific Batch Normalization for Unsupervised Domain Adaptation无监督域适配的特定域批处理规范化

    CVPR2019:Domain-Specific Batch Normalization for Unsupervised Domain Adaptation无监督域适配的特定域批处理规范化 0.摘要 ...

  8. 域适应(domain adaptation)

    文章目录 导读 前言 域适应类别 任务相关性 一步域适应技术及其应用 基于散度的域适应 基于对抗的域适应 基于重建的域适应 结论 导读 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时, ...

  9. ICCV2019-SSF-DAN: Separated Semantic Feature based Domain Adaptation Network for Semantic Segmentati

    SSF-DAN: Separated Semantic Feature based Domain Adaptation Network for Semantic Segmentation 基于分离语义 ...

  10. 【论文阅读】Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift

    Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift SUMMARY@ 2020 ...

最新文章

  1. oracle如何自动分析报告,ORACLE 性能分析报告的获取
  2. 我的网站搭建: (第一天) 模型设计
  3. mysql动态规划_动态规划《开篇》
  4. C语言gauss elimination高斯消元法算法(附完整源码)
  5. JPA 不在 persistence.xml 文件中配置每个Entity实体类的2种解决办法
  6. 莫凡机器学习课程笔记
  7. Windows修改远程桌面端口方法步骤
  8. 刷路由器文件服务器打开失败,路由器升级错误引发网页打开失败故障
  9. 手机用久了很卡怎么办?
  10. linux tcp socket 接收的字节数与发送的字节数不符,TCP发送接口(如send(),write()等)的返回值与成功发送到接收端的数据量无直接关系...
  11. CVE-2020-10148: SolarWinds 远程代码执行漏洞通告
  12. SYN 包(synchronize)
  13. 一种采集USB热敏小票打印机的硬件,用于商超购物中心营业小票采集的硬件方案
  14. python命令行参数是什么
  15. 0063-【测序行业】-国内首个基于NGS技术的癌症多基因检测试剂盒获CFDA准产批件
  16. Android 11.0 12.0TvSettings系统设置遥控器home键退不出主页面功能的修复
  17. 计算机音乐数字乐谱星星点灯,星星点灯-郑智化-和弦谱-《弹吧》官网tan8.com-和弦谱大全,学吉他,秀吉他...
  18. 利用GIMP实现图片压缩
  19. wordCount的解析
  20. 裸金属云FASS高性能弹性块存储解决方案

热门文章

  1. Win10-更改c盘下的用户文件夹名
  2. 扫地阿姨看完都学会了!写给即将正在找工作的Java攻城狮,砥砺前行!
  3. QQ空间说说一键批量删除软件2.0使用教程
  4. word2007制作目录
  5. 互联网专家资源分享(二)
  6. 瑞云Renderbus渲染农场GPU渲染集群正式上线!
  7. vscode如何更换主题
  8. 如何制作ISO镜像文件
  9. Android开发入门教程1-开发环境的搭建
  10. 全球及中国回转窑扫描仪行业发展动态与前景趋势预测报告2022-2028年