在上一个小系列文章《ASP.NET Core on K8S学习初探》中,通过在Windows上通过Docker for Windows搭建了一个单节点的K8S环境,并初步尝试将ASP.NET Core WebAPI项目部署到了K8S,把玩了一下快速部署和实例伸缩。这个系列开始,会继续学习K8S以及在Linux上搭建集群来深入把玩。本篇会回顾一下K8S的基本概念以及架构组成,然后会通过Kubeadm快速地搭建一个K8S集群供后续学习把玩之用。

01

K8S基础概念回顾

 1.Cluster 集群

  计算、存储和网络资源的集合,Kubernetes利用这些资源运行各种基于容器的应用。

  2.Master

  Master是Cluster的大脑,负责调度(决定将应用放在哪里运行),一般为了实现高可用,会有多个Master。

  3.Node

  负责运行具体的容器,Node由Master管理,它会监控并汇报容器的状态,同时根据Master的要求管理容器的生命周期。

  eg. 在交互实验中,这个Cluster中只有一个主机,它既是Master也是Node。

  4.Pod

  Kubernetes的最小工作单元,每个Pod包含一个或多个容器。Pod中的容器会被作为一个整体被Master调度到一个Node上运行。

  (1)为何引入Pod?

  一是方便管理:

  有些容器天生联系紧密,需要在一起工作。Pod提供了比容器更高层次的抽象,将它们封装到一个部署单元中。K8S以Pod为最小单位进行调度、扩展、共享资源、管理生命周期。

  eg.正例:File Puller & Web Server => 需要部署在一起工作

    反例:Tomecat & MySQL => 不需要部署在一起工作

  二是可以共享资源和通信:

  Pod中所有容器使用同一个网络namespace,即相同的IP和端口空间,可以直接用localhost通信,而且还可以共享存储(本质是通过将Volume挂载到Pod中的每个容器)

  (2)如何使用Pod?

  运行单个容器:one-container-per-Pod,K8S中最常见的模型,即使这种情形下,K8S管理的也是Pod而不是单个容器。

  运行多个容器:将联系非常紧密的多个容器部署到一个Pod中,可以直接共享资源。

  5.Controller

  K8S不会直接创建Pod,是通过Controller来管理Pod的。为了满足不同业务场景,K8S提供了多种Controller:

  (1)Deployment

  最常见的Controller,可以管理Pod的多个副本,并确保Pod按照期望的状态运行。

  (2)ReplicaSet

  实现了Pod的多副本管理,使用Deployment时会自动创建ReplicaSet。换句话说,Deployment是通过ReplicaSet来管理Pod的多个副本的,通常不需要直接使用ReplicaSet。

  (3)DaemonSet

  用于每个Node最多只运行一个Pod副本的场景,DaemonSet通常用于运行daemon(守护进程、后台程序)。

  (4)StatefuleSet

  用于保证Pod的每个副本在整个生命周期中名称是不变的,而其他的Controller不提供这个功能。(非StatefuleSet下,当某个Pod发生故障需要删除并重启时,Pod的名称是会变化的)

  (5)Job

  用于运行结束就删除的应用,其他Controller下Pod通常是长期持续运行的。

  6.Service

  K8S定义了外界访问一个或一组特定Pod的方式,就是Service。每个Service有自己的IP和端口,并且为Pod提供了负载均衡。

  如果说K8S运行Pod的任务是交给了Controller去做,那么访问Pod的任务则是交给了Service去做。

  7.Namespace

  Namespace将一个物理的Cluster从逻辑上划分为多个虚拟Cluster,每个虚拟Cluster就是一个Namespace,不同Namespace中的资源是完全隔离的。

K8S中会自动创建两个Namespace:

  (1)default:创建资源时如果不指定Namespace就会放到这里

  (2)kube-system: K8S自己创建的系统资源都会放到这个Namespace中

02

K8S集群架构解析

下面展示了一个最小化的K8S集群,一个master节点和两个node节点:

*.master上也有kubelet和kube-proxy是因为master同时也是一个Node

  1.Master节点

  K8S集群的“大脑”,运行以下多个Daemon服务:

  2.Node节点

  运行Pod的主战场,主要运行以下K8S组件:

03

K8S集群环境搭建

3.1 K8S环境搭建的几种方式

  搭建K8S环境有几种常见的方式如下:

  (1)Minikube

  Minikube是一个工具,可以在本地快速运行一个单点的K8S,供初步尝试K8S或日常开发的用户使用,不能用于生产环境。

  (2)Kubeadm

  Kubeadm是K8S官方社区推出的一套用于简化快速部署K8S集群的工具,Kubeadm的设计目的是为新用户开始尝试K8S提供一种简单的方法。

  (3)二进制包

  除了以上两种方式外,我们还可以通过从官方下载二进制包,手动部署每个组件组成K8S集群,这也是目前企业生产环境中广为使用的方式,但对K8S管理人员的要求较高。

  本次学习实践我们主要借助Kubeadm工具搭建K8S集群,以便后续实践部署ASP.NET Core应用集群。

3.2 搭建前的准备工作

  (1)准备三台Linux服务器

  这里我选择通过VMware Workstaion来搭建3个虚拟机,每个配置2CPU和2G内存,如下图:

  

  (2)配置主机名与静态IP地址如下表所示:

角色 主机名 IP地址
Master k8s-master 192.168.2.100
Node k8s-node1 192.168.2.101
Node k8s-node2 192.168.2.102

  然后,更改hosts文件添加主机名与IP映射关系

# vim /etc/hosts
192.168.2.100 k8s-master
192.168.2.101 k8s-node1
192.168.2.102 k8s-node2

  (3)关闭防火墙

systemctl stop firewalld
systemctl disable firewalld

  (4)关闭selinux

sed -i 's/enforcing/disabled/' /etc/selinux/config
setenforce 0

  (5)关闭swap => K8S中不支持swap分区

# vim /etc/fstab
#/dev/mapper/centos-swap swap                    swap    defaults        0 0

  *.编辑etc/fstab将swap那一行注释掉或者删除掉

  (6)将桥接的IPv4流量传递到iptables的链

# cat > /etc/sysctl.d/k8s.conf << EOF   net.bridge.bridge-nf-call-ip6tables = 1    net.bridge.bridge-nf-call-iptables = 1 EOF # sysctl --system

3.3 安装Docker&Kubeadm&Kubelet

以下步骤请在所有节点中操作:

  (1)安装Docker

# wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O
/etc/yum.repos.d/docker-ce.repo
# yum -y install docker-ce-18.06.1.ce-3.el7
# systemctl enable docker && systemctl start docker
# docker --version
Docker version 18.06.1-ce, build e68fc7a

  *.这里安装的是18.06社区版,如果你之前有安装低版本的Docker,为了配合本次实验的K8S版本(1.13.x),建议先卸载掉,卸载过程可以参考这篇文章《CentOS7 Docker升级》。

  (2)添加阿里云Yum软件源

# cat > /etc/yum.repos.d/kubernetes.repo << EOF
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg
https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF

  (3)安装Kubeadm&Kubelet&Kubectl

  注意:本次部署K8S版本号为1.13.3

# yum install -y kubelet-1.13.3 kubeadm-1.13.3 kubectl-1.13.3
# systemctl enable kubelet

  遇到的一些坑如下:

  ① 碰到需要kubernetes-cni的问题:

#####错误:软件包:kubelet-1.13.3-0.x86_64 (kubernetes)
需要:kubernetes-cni = 0.6.0
可用: kubernetes-cni-0.3.0.1-0.07a8a2.x86_64 (kubernetes)
kubernetes-cni = 0.3.0.1-0.07a8a2
可用: kubernetes-cni-0.5.1-0.x86_64 (kubernetes)
kubernetes-cni = 0.5.1-0
可用: kubernetes-cni-0.5.1-1.x86_64 (kubernetes)
kubernetes-cni = 0.5.1-1
可用: kubernetes-cni-0.6.0-0.x86_64 (kubernetes)
kubernetes-cni = 0.6.0-0
正在安装: kubernetes-cni-0.7.5-0.x86_64 (kubernetes)
kubernetes-cni = 0.7.5-0
您可以尝试添加 --skip-broken 选项来解决该问题
您可以尝试执行:rpm -Va --nofiles --nodigest

  解决:手动安装kubernetes-cni对应的版本

yum install -y kubelet-1.13.3 kubeadm-1.13.3 kubectl-1.13.3 kubernetes-cni-0.6.0

  ② 使用yum安装程序时,提示xxx.rpm公钥尚未安装

从 https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg 检索密钥
导入 GPG key 0xA7317B0F:  用户ID     : "Google Cloud Packages Automatic Signing Key <gc-team@google.com>"  指纹       : d0bc 747f d8ca f711 7500 d6fa 3746 c208 a731 7b0f    来自       : https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg    e3438a5f740b3a907758799c3be2512a4b5c64dbe30352b2428788775c6b359e-kubectl-1.13.3-0.x86_64.rpm 的公钥尚未安装    失败的软件包是:kubectl-1.13.3-0.x86_64  GPG  密钥配置为:https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg

  解决:使用 yum install xxx.rpm --nogpgcheck 命令格式跳过公钥检查,比如跳过kubectl和kubeadm的公钥检查如下命令:

yum install kubectl-1.13.3-0.x86_64 --nogpgcheck
yum install kubeadm-1.13.3-0.x86_64 --nogpgcheck

3.4 部署Kubernetes Master

  以下步骤请在k8s-master节点上操作:

kubeadm init \
--apiserver-advertise-address=192.168.2.100 \
--image-repository registry.aliyuncs.com/google_containers \
--kubernetes-version v1.13.3 \
--service-cidr=10.1.0.0/16 \
--pod-network-cidr=10.244.0.0/16

PS:由于默认拉取镜像地址k8s.gcr.io国内无法访问,这里指定阿里云镜像仓库地址(registry.aliyuncs.com/google_containers)。官方建议服务器至少2CPU+2G内存,当然内存1G也是可以的,但是会出Warning,建议还是老老实实升2G内存把。

  

  接下来,为了顺利使用kubectl命令,执行以下命令:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
# kubectl get nodes

  这时你可以使用kubectl了,当你执行完kubectl get nodes之后,你会看到如下状态:

  

3.5 部署Pod网络插件(CNI)

  同样,继续在k8s-master上操作:

kubectl apply -f \
https://raw.githubusercontent.com/coreos/flannel/a70459be0084506e4ec919aa1c114638878db11b/Documentation/kube-flannel.yml

  然后通过以下命令验证:全部为Running则OK,其中一个不为Running,比如:Pending、ImagePullBackOff都表明Pod没有就绪

  

  如果其中有的Pod没有Running,可以通过以下命令查看具体错误原因,比如这里我想查看kube-flannel-ds-amd64-8bmbm这个pod的错误信息:

kubectl describe pod kube-flannel-ds-amd64-8bmbm -n kube-system

  在此过程中可能会遇到无法从qury.io拉取flannel镜像从而导致无法正常Running,解决办法如下:

  使用国内云服务商提供的镜像源然后通过修改tag的方式曲线救国

docker pull quay-mirror.qiniu.com/coreos/flannel:v0.11.0-amd64
docker tag quay-mirror.qiniu.com/coreos/flannel:v0.11.0-amd64 quay.io/coreos/flannel:v0.10.0-amd64
docker rmi quay-mirror.qiniu.com/coreos/flannell:v0.11.0-amd64

  这时,我们再看看master节点的状态就会从NotReady变为Ready:

  

  那么,恭喜你,Master节点部署结束了。如果你只想要一个单节点的K8S,那么这里就完成了部署了。

3.6 加入Kubernetes Node

  在两台Node节点上执行join命令:

kubeadm join 192.168.2.100:6443 --token ekqxk2.iiu5wx5bbnbdtxsw --discovery-token-ca-cert-hash \
sha256:c50bb83d04f64f4a714b745f04682b27768c1298f331e697419451f3550f2d05

  这里需要注意的就是,带上在Master节点Init成功后输出的Token。如果找不到了,没关系,可以通过以下命令来查看:

kubeadm token list

  Node节点上成功join之后会得到以下信息:

  

  这时,我们在master节点上执行以下命令可以看到集群各个节点的状态了:

  

  如果看到两个Node状态不是Ready,那么可能需要检查哪些Pod没有正常运行:

kubectl get pod --all-namespaces

  然后按照3.5中的检查方式进行检查并修复,最终kubectl get nodes效果应该状态都是Running。注意的是在检查时需要注意是哪个Node上的错误,然后在对应的Node进行修复,比如拉取flannel镜像。

  至此,一个最小化的K8S集群已经搭建完毕。

3.7 测试Kubernetes集群

  这里为了快速地验证一下我们的K8S集群是否可用,创建一个示例Pod:

kubectl create deployment nginx --image=nginx
kubectl expose deployment nginx --port=80 --type=NodePort
kubectl get pod,svc

  

如果想要看到更多的信息,比如pod被部署在了哪个Node上,可以通过 kubectl get pods,svc -o wide来查看。

  

  因为是NodePort方式,因此其映射暴露出来的端口号会在30000-32767范围内随机取一个,我们可以直接通过浏览器输入IP地址访问,比如这时我们通过浏览器来访问一下任一Node的IP地址加端口号,例如192.168.2.101:31174或192.168.2.102:31174

  

  

   如果能够成功看到,那么恭喜你,你的K8S集群能够成功运行了,万里长征走完了第一步!

04

小结


本文快速地介绍了一下Kubernetes的核心构成组件及其作用,然后通过在三台Linux主机上通过Kubeadm搭建了一个Master节点两个Node节点的集群,最后通过部署一个Deployment来快速地验证了一下集群是否可用。下一篇会通过一个ASP.NET Core的部署例子来演示和介绍一下各个组件之间是如何协作的,以及部署Dashboard。

参考资料

(1)CloudMan,《每天5分钟玩转Kubernetes》

(2)李振良,《一天入门Kubernets教程》

(3)李振良,《30分钟部署一个Kubernetes集群》

(4)cao_xiaobo,《CentOS7 部署K8S集群》

点个在看少个bug ?

ASP.NET Core on K8S深入学习(1)K8S基础知识与集群搭建相关推荐

  1. 大数据技术之_17_Storm学习_Storm 概述+Storm 基础知识+Storm 集群搭建+Storm 常用 API+Storm 分组策略和并发度

    大数据技术之_17_Storm学习 一 Storm 概述 1.1 离线计算是什么? 1.2 流式计算是什么? 1.3 Storm 是什么? 1.4 Storm 与 Hadoop 的区别 1.5 Sto ...

  2. ASP.NET Core应用程序容器化、持续集成与Kubernetes集群部署(三

    在上文ASP.NET Core应用程序容器化.持续集成与Kubernetes集群部署(二)中,我介绍了如何使用Azure DevOps为ASP.NET Core应用程序案例:tasklist搭建持续集 ...

  3. ASP.NET Core应用程序容器化、持续集成与Kubernetes集群部署(二)

    在上文中我介绍了ASP.NET Core应用程序容器化时需要注意的几个问题,并给出了一个案例应用程序:tasklist.今天接着上文的内容,继续了解一下如何使用Azure DevOps进行ASP.NE ...

  4. ASP.NET Core应用程序容器化、持续集成与Kubernetes集群部署(一)

    上个月15日,上海MVP做了一次线下的技术分享活动,我分享的主题是<快速构建容器化的ASP.NET Core应用程序>,有关这次活动的简报,可以参考这里.另外,我的主题分享的PPT也可以点 ...

  5. 深入学习MySQL、SQL优化、集群搭建

    个人博客欢迎访问 总结不易,如果对你有帮助,请点赞关注支持一下 微信搜索程序dunk,关注公众号,获取博客源码 日拱一卒,不期速成,厚积薄发 序号 内容 1 Java基础面试题 2 JVM面试题 3 ...

  6. k8s高可用集群搭建部署

    简介 k8s普通搭建出来只是单master节点,如果该节点挂掉,则整个集群都无法调度,K8s高可用集群是用多个master节点加负载均衡节点组成,外层再接高可用分布式存储集群例如ceph集群,实现计算 ...

  7. ASP.NET Core 借助 Helm 部署应用至 K8S

    前言 玩K8S也有一段时间了,借助云服务提供商的K8S控制台,已经可以很方便的快速部署应用至K8S.通过简单的点击,可以一次性帮忙创建K8S 对象:Deployment.Service.Ingress ...

  8. ASP.NET Core MVC 源码学习:MVC 启动流程详解

    前言 在 上一篇 文章中,我们学习了 ASP.NET Core MVC 的路由模块,那么在本篇文章中,主要是对 ASP.NET Core MVC 启动流程的一个学习. ASP.NET Core 是新一 ...

  9. .Net Core2.1 秒杀项目一步步实现CI/CD(Centos7)系列二:k8s高可用集群搭建总结以及部署API到k8s...

    前言:本系列博客又更新了,是博主研究很长时间,亲自动手实践过后的心得,k8s集群是购买了5台阿里云服务器部署的,这个集群差不多搞了一周时间,关于k8s的知识点,我也是刚入门,这方面的知识建议参考博客园 ...

最新文章

  1. mysql 1418 错误原因及解决
  2. Zookeeper与paxos算法
  3. Workflow Core + asp.net core 5.0 实现简单审批工作流
  4. linux 关闭句柄,主库出现大量的未关闭句柄,对应linux命令 : lsof -p 28314|grep CLOSE_WAIT...
  5. 微信被指监听用户,腾讯回应;谷歌意外推送 Android 11 Beta 更新;Linux 5.7 发布 | 极客头条...
  6. java实现浏览器_利用Java实现网页浏览器
  7. java argument parse_snmp4j 之 ArgumentParser
  8. Linux下获取时间差(毫秒级)
  9. 基于51单片的电风扇系统
  10. windows 文件系统
  11. 奥克兰大学商学院计算机专业,奥克兰大学的商科专业 推荐三大专业
  12. 【附源码】计算机毕业设计SSM社区志愿者管理系统
  13. #SVN Skipped ‘xxx‘ -- Node remains in conflict 错误的解决办法#
  14. 【Structure Light】reading notes(一)
  15. c语言中sub是什么指令,汇编 – SUB指令的目的是什么?
  16. Linux系统load average异常值处理的trick
  17. 查找并下载开放的音乐数据(.mp3)
  18. 计算机网络原理 计算题,计算机网络原理计算题
  19. ROS入门(八)——仿真机器人四(Gazebo+Rviz+雷达、摄像头、kinet仿真显示)
  20. 小学计算机社团活动简报,多彩社团活动,幸福校园生活——单集镇新河小学开展社团活动简讯...

热门文章

  1. LuckyDraw app被评为Microsoft365 App Award
  2. 使用ama0实现串口通信_“ AMA”是什么意思,以及如何使用它?
  3. android页面布局 如何让中间的listview填充剩余部分_谷歌驾驶设计—界面设计布局...
  4. [PHP] 多表外连接性能测试及优化
  5. 什么是Freedoc?Freedoc是什么?
  6. 常见的几种RuntimeException
  7. DNS的一些实际应用(一)
  8. .NET6之MiniAPI(八):日志
  9. Win11用户增长迅速!你升了吗?
  10. Blazor 模板化组件开发指南