LCD有如下控制线:
CS:Chip Select 片选,低电平有效
RS:Register Select 寄存器选择
WR:Write 写信号,低电平有效
RD:Read 读信号,低电平有效
RESET:重启信号,低电平有效
DB0-DB15:数据线

假如这些线,全部用普通IO口控制。根据LCD控制芯片手册(大部分控制芯片时序差不多):
如果情况如下:
DB0-DB15的IO全部为1(表示数据0xff),也可以为其他任意值,这里以0xff为例。
CS为0(表示选上芯片,CS拉低时,芯片对传入的数据才会有效)
RS为1(表示DB0-15上传递的是要被写到寄存器的值),如果为0,表示传递的是数据。(这里原作者应该是搞反了,应该是:RS = 0时,表示读写寄存器;RS = 1表示读写数据RAM。
WR为0,RD为1(表示是写动作),反过来就是读动作。
RESET一直为高,如果RESET为低,会导致芯片重启。
这种情况,会导致一个值0xff被传入芯片,被LCD控制芯片当作写寄存器值去解析。LCD控制芯片收到DB0-15上的值之后,根据其他控制线的情况,它得出结论,这个0xff是用来设置寄存器的。一般情况下,LCD控制芯片会把传入的寄存器值的高8位当做寄存器地址(因为芯片内部肯定不止一个寄存器),低8位当做真正的要赋给对应寄存器值。这样,就完成了一个写LCD控制芯片内部寄存器的时序。

如果上述情况不变,只将RS置低,那么得到的情况如下:LCD控制芯片会把DB0-15上的数据当做单纯的数据值来处理。那么假如LCD处在画图状态,这个传入的值0xff,就会被显示到对应的点上,0xffff就表示白色,那么对应的点就是白色。在这个数据值传递过来之前,程序肯定会通过设置寄存器值,告诉LCD控制芯片要写的点的位置在哪里。

如果上述两种情况都不变,分别把WR和RD的信号反过来(WR=1,RD=0),那么写信号就会被变成读信号。读信号下,主控芯片需要去读DB0-15的值,而LCD控制芯片就会去设置DB0-15的值,从而完成读数据的时序。

读寄存器的时序麻烦一点。第一步,先要将WR和RD都置低,主控芯片通过DB0-15传入寄存器地址。第二步就和前面读数据一样,将WR置高,RD置低,读出DB0-15的值即可。在这整个的过程中,RS一直为低。

好了,上面就是IO直接控制LCD的方法。假如放到STM32里面,用IO直接控制显得效率很低。STM32有FSMC(其实其他芯片基本都有类似的总线功能),FSMC的好处就是你一旦设置好之后,WR、RD、DB0-DB15这些控制线和数据线,都是FSMC自动控制的。打个比方,当你在程序中写到:
*(volatile unsigned short int *)(0x60000000)=val;
那么FSMC就会自动执行一个写的操作,其对应的主控芯片的WE、RD这些脚,就会呈现出写的时序出来(即WE=0,RD=1),数据val的值也会通过DB0-15自动呈现出来(即FSMC-D0:FSMC-D15=val)。地址0x60000000会被呈现在数据线上(即A0-A25=0,地址线的对应最麻烦,要根据具体情况来,好好看看FSMC手册)。
那么在硬件上面,我们需要做的,仅仅是MCU和LCD控制芯片的连接关系:
WE-WR,均为低电平有效
RD-RD,均为低电平有效
FSMC-D0-15接LCD DB0-15
连接好之后,读写时序都会被FSMC自动完成。但是还有一个很关键的问题,就是RS没有接,CS没有接。因为在FSMC里面,根本就没有对应RS和CS的脚。怎么办呢?这个时候,有一个好方法,就是用某一根地址线来接RS。比如我们选择了A16这根地址线来接,那么当我们要写寄存器的时候,我们需要RS,也就是A16置高。软件中怎么做呢?也就是将FSMC要写的地址改成0x60020000,如下:
*(volatile unsigned short int *)(0x60020000)=val;
这个时候,A16在执行其他FSMC的同时会被拉高,因为A0-A18要呈现出地址0x60020000。0x60020000里面的Bit17=1,就会导致A16为1。
当要读数据时,地址由0x60020000改为了0x60000000,这个时候A16就为0了。

那么有朋友就会有疑问,第一,为什么地址是0x6xxxxxxx而不是0x0xxxxxxx;第二,CS怎么接;第三,为什么Bit17对应A16?
先来看前两个问题,大家找到STM32的FSMC手册,在FSMC手册里面,我们很容易找到,FSMC将0x60000000-0x6fffffff的地址用作NOR/PRAM(共256M地址范围)。而这个存储块,又被分成了四部分,每部分64M地址范围。当对其中某个存储块进行读写时,对应的NEx就会置低。这里,就解决了我们两个问题,第一,LCD的操作时序,和NOR/PRAM是一样的(为什么一样自己找找NOR/PRAM的时序看看),所以我们选择0x6xxxxxxx这个地址范围(选择这个地址范围,操作这个地址时,FSMC就会呈现出NOR/PRAM的时序)。第二,我们可以将NEx连接到LCD的CS,只要我们操作的地址是第一个存储块内即可(即0-0x3ffffff地址范围)。

第三个问题再来看一看FSMC手册关于存储器字宽的描述,我们发现,当外部存储器是16位时,硬件管脚A0-A24表示的是地址线A1-A25的值,所以我们要位移一下,Bit17的值,实际会被反应到A16这根IO来。关于数据宽度及位移的问题,初学的朋友可能会比较疑惑,当你接触了多NOR/PRAM这样的器件后,你会发现,很多芯片的总线,都是这样设计的,为的是节省地址线。

PS:看到这里还是不明白,于是查了下手册,有这么一个图,大意是若外部设备的地址宽度是8位的,则HADDR[25:0]与STM32的CPU引脚FSMC_A[25:0]一一对应,最大可以访问64M字节的空间。若外部设备的地址宽度是16位的,则是HADDR[25:1]与STM32的CPU引脚FSMC_A[24:0]一一对应。

HADDR

FSMC_A

25

·

·

1

24

·

·

0

就是上图这个意思,这里的HADDR是需要转换到外部设备的内部AHB地址线,每个地址对应一个字节单元。所以我的理解是:上面出现的地址0x60020000,是工作于CPU内部的地址,体现在HADDR上面是17脚,但是转换到硬件引脚上就是FSMC_A16脚了(因为从上图看来,地址正好是差1,虽然HADDR的地址0并没有,但是可以虚构一下,就当它有了,呵呵),与液晶屏的RS脚相连。

——纯粹个人瞎理解,老是感觉再看的时候跟新的一样,还是用自己的话记录一下吧

那么上面就完全解决了LCD驱动如何接FSMC的问题,如果读者没懂,建议将上述文字抄上一遍,FSMC手册对应NOR/PRAM的章节抄一遍。还没懂,就继续抄一遍,抄到懂为止。
虽然上述只是针对LCD讲解了FSMC,但是其实对NOR和外部RAM的操作也是类似的,只不过多了些地址线来寻址而已。--By YuanYin.

STM32 FSMC 详解相关推荐

  1. stm32位操作详解

    stm32位操作详解 STM32位操作原理 思想:把一个比特分成32位,每位都分配一个地址,这样就有32个地址,通过地址直接访问. 位操作基础 位运算 位运算的运算分量只能是整型或字符型数据,位运算把 ...

  2. STM32 定时器详解

    STM32 定时器详解 吃了一个猛亏,自己理解花了大半天时间,结果一看代码发现巨简单 算了,把自己理解的放上来吧 目录 STM32 定时器详解 前言 一.定时器种类和区分 二.时钟源 三.计数过程 3 ...

  3. STM32 DAC详解

    目录 01.DAC简介 02.DAC转换 03.功能说明 04.DAC输出电压 05.代码配置 上一篇介绍了<STM32ADC详解>,既然有模拟转数字的ADC模块,那么就必然有数字转模拟的 ...

  4. STM32 SPI详解

    目录 1.SPI简介 2.SPI特点 2.1.SPI控制方式 2.2.SPI传输方式 2.3.SPI数据交换 2.4.SPI传输模式 3.工作机制 3.1.相关缩写 3.2.CPOL极性 3.3.CP ...

  5. STM32 GPIO 详解

    0. 实验平台 基于STM32F407ZG 1. GPIO 简介 1.1 简介 GPIO全称:General Purpose Input Output,即通用输入输出端口,一般用来采集外部器件的信息或 ...

  6. STM32 ADC详解

    目录 01.ADC简介 02.STM32的ADC外设 03.STM32ADC框图讲解 04.触发源 05.转换周期 06.数据寄存器 07.中断 08.电压转换 09.电路图设计 10.代码设计 01 ...

  7. STM32的FSMC详解

    STM32的FSMC真是一个万能的总线控制器,不仅可以控制SRAM,NOR FLASH,NAND FLASH,PC Card,还能控制LCD,TFT. 一般越是复杂的东西,理解起来就很困难,但是使用上 ...

  8. TFTLCD之FSMC详解

    TFTLCD的引脚介绍 TFTLCD显示用到的引脚如下所示: 表格1 名称 说明 CS LCD片选信号 RS 命令/数据控制信号(0:命令:1:数据) WR 写使能(低电平有效) RD 读使能(低电平 ...

  9. STM32 串口详解

    目录 01.USART的特点 02.USART简介 2.1.数据传输模型 2.2.帧结构 2.3.波特率 03.STM32的USART 04.代码配置 01.USART的特点 USART是通用异步收发 ...

最新文章

  1. mysql 触发器判断不插入数据_mysql关于触发器怎么判断数据存在时更新不存在时添加呢!...
  2. Panabit 安装指南
  3. berkeley db java edition 源码,Berkeley DB Java Edition
  4. Bootstrap3 工具提示插件的选项
  5. php打印倒立金字塔,编写程序打印*字符形成的等腰三角形倒立金字塔图形 ******* ***** *** *...
  6. Python 机器学习——线性代数和矩阵运算:从matlab迁移到python
  7. 20181102_WCF简单双工
  8. 如何更换tomcat版本
  9. 服装ERP管理软件有哪些功能
  10. 批处理for循环命令初步学习
  11. 题解 P2184 【贪婪大陆】
  12. 被称为中国版“Robinhood”,老虎与富途谁的低佣生意更值钱?
  13. python获取List的形状
  14. 面试:View加载流程setContentView
  15. [海森推荐]人工智能-人工智能好书推荐
  16. AppCode 是一款强大的iOS代码编写利器丨功能介绍
  17. typescript项目中引入汉字转拼音js
  18. Python 将png图片转为bmp
  19. 关于smartlink的负载均衡
  20. 单轴滑轨实验台实现的运动控制(2)

热门文章

  1. 吐槽一下颓废的自己+请教问题
  2. 转载:中国电信、网通、联通ADSL用户必读:中国电信、网通、联通劫持dns(浏览器)解决方案
  3. 缓存穿透、缓存击穿、缓存雪崩的理解和解决方案
  4. (坑记)GenymotionVirtualBox下载到配置和OVA的正确配置流程
  5. android 动态数据抓取,mitmproxy抓取Keep热门动态-安卓APP抓包爬虫案例
  6. ipfs是什么?ipfs分布式存储技术的原理是什么?
  7. HTML5 图片边框
  8. java docx转html
  9. 适合小作坊生产宠物饲料的配方工艺
  10. 数组【数据结构与算法Java】