3D点云 (Lidar)检测入门篇 - PointPillars PyTorch实现

完整代码:https://github.com/zhulf0804/PointPillars。

自动驾驶中基于Lidar的object检测,简单的说,就是从3D点云数据中定位到object的框和类别。具体地,输入是点云X∈RN×c\mathbf X \in \mathbb R^{N \times c}XRN×c (一般c=4c=4c=4),输出是nnn个检测框bboxes, 以第iii个检测框bbox为例, 它包括位姿信息(xi,yi,zi,wi,li,hi,θi)(x_i, y_i, z_i, w_i, l_i, h_i, \theta_i)(xi,yi,zi,wi,li,hi,θi)和类别信息(labeli,scorei)(\text{label}_i, \text{score}_i)(labeli,scorei)

基于Lidar的object检测模型包括Point-based [PointRCNN(CVPR19), IA-SSD(CVPR22)等], Voxel-based [PointPillars(CVPR19), CenterPoint(CVPR21)等],Point-Voxel-based [PV-RCNN(CVPR20), HVPR(CVPR21)等]和Multi-view-based[PIXOR(CVPR18)等]等。本博客主要记录,作为菜鸟的我,在KITTI数据集上(3类)基于PyTorch实现PointPillars的一些学习心得, 训练和测试的pipeline如Figure 1所示。这里按照深度学习算法的流程进行展开: 数据 + 网络结构 + 预测/可视化 + 评估,和实现的代码结构是一一对应的,完整代码已更新于github: https://github.com/zhulf0804/PointPillars。

[说明 - 代码的实现是通过阅读mmdet3dv0.18.1源码, 加上自己的理解完成的。因为不会写cuda, 所以cuda代码和少量代码是从mmdet3dv0.18.1复制过来的。]

一、KITTI 3D检测数据集

1.1 数据集信息:

  • KITTI数据集论文: Are we ready for autonomous driving? the kitti vision benchmark suite [CVPR 2012] 和 Vision meets robotics: The kitti dataset [IJRR 2013]
  • KITTI数据集下载(下载前需要登录): point cloud(velodyne, 29GB), images(image_2, 12 GB), calibration files(calib, 16 MB)和labels(label_2, 5 MB)。数据velodyne, calib 和 label_2的读取详见utils/io.py

1.2 ground truth label信息 [file]

对每一帧点云数据, label是nnn个15维的向量, 组成了8个维度的信息。

含义 样例
0 类别名称(type) Car
1 截断(truncated, float) 从 0 (non-truncated) 到 1 (truncated)
2 遮挡(occluded, int) 0=fully visible, 2 = largely occluded
3 观测角(alpha) [−π,π][-\pi, \pi][π,π]
4:8 图像2d bbox (57.68 178.66 341.72 285.91)
8:11 3d 尺寸(dimensions) (h, w, l) (1.65 1.68 3.88)
11:14 相机坐标系下的坐标(location) (x, y, z), 下平面中心点的坐标 (-6.88 1.77 12.36)
14 相机坐标系下绕YYY轴旋转的弧度(rotation_y) [−π,π-\pi, \piπ,π]
  • 训练时主要用到的是类别信息(type) 和3d bbox 信息 (location, dimension, rotation_y).
  • 观测角(alpha)和旋转角(rotation_y)的区别和联系可以参考博客https://blog.csdn.net/qq_16137569/article/details/118873033。

1.3 坐标系的变换

因为gt label中提供的bbox信息是Camera坐标系的,因此在训练时需要使用外参等将其转换到Lidar坐标系; 有时想要把3d bbox映射到图像中的2d bbox方便可视化,此时需要内参。具体转换关系如Figure 2。坐标系转换的代码见utils/process.py

1.4 数据增强

数据增强应该是Lidar检测中很重要的一环。发现其与2D检测中的增强差别较大,比如3D中会做database sampling(我理解的是把gt bbox进行cut-paste), 会做碰撞检测等。在本库中主要使用了采用了5种数据增强, 相关代码在dataset/data_aug.py

  • 采样gt bbox并将其复制到当前帧的点云

    • 因为当前帧点云中objects(gt_bboxes)可能比较少, 不利于训练; 因此从Car, Pedestrian, Cyclist的database数据集中随机采集一定数量的bbox及inside points, 使当前帧中每类gt_bboxes的数量分别达到15, 10, 10.
    • 但因为在实际情况中, gt_bboxes是没有overlap的(若存在overlap, 就表示有碰撞了); 因此需要将采样的bboxes先与当前帧点云中的gt_bboxes进行碰撞检测, 通过碰撞检测的bboxes和对应labels加到gt_bboxes_3d, gt_labels; 同时把当前帧点云中位于这些采样bboxes内的点删除掉, 替换成采样的bboxes(包括inside points).
  • bbox 随机旋转平移
    • 以某个bbox为例, 随机产生num_try个平移向量t和旋转角度r, 旋转角度可以转成旋转矩阵(mat).
    • 对bbox进行旋转和平移, 找到num_try中第一个通过碰撞测试的平移向量t和旋转角度r(mat).
    • 对bbox内部的点进行旋转和平移.
    • 对bbox进行旋转和平移.
  • 随机水平翻转
    • points水平翻转
    • bboxes水平翻转
  • 整体旋转/平移/缩放
    • object旋转, 缩放和平移
    • point旋转, 缩放和平移
  • 对points进行shuffle: 打乱点云数据中points的顺序。

Figure3是对上述前4种数据增强的可视化结果。

二、网络结构与训练

对于输入点云X∈RN×4\mathbf X \in \mathbb R^{N \times 4}XRN×4, PointPillars是如何一步步地得到bbox的呢 ? 相关代码见model/pointpillars.py

2.1 网络结构

  • PillarLayer

    Lidar的range是[0, -39.68, -3, 69.12, 39.68, 1], 即(xmin, ymin, zmin, xmax, ymax, zmax)。

    • 基于预先设定好的voxel_size=(0.16, 0.16, 4), 将点云X\mathbf XX中的NNN个点划分到(432, 496, 1)个Pillars里。
    • 选择PPP(训练集中最多16000, 测试集中最多40000)个Pillars, 并且每个Pillar选择M=32M=32M=32个点, 不足32个点时补(0, 0, 0, 0)。

    数据shape的变化: (N,4)(N, 4)(N,4) -> (P,M,4)(P, M, 4)(P,M,4), 同时记录这PPP个Pillars在(432, 496)的map中的位置(coors)和每个Pillar中有效点的数量(npoints_per_pillar)。

  • PillarEncoder

    • 对每个Pillar中的点进行去均值编码: (P,M,4)(P, M, 4)(P,M,4) -> $$(P, M, 3)
    • 对每个Pillar中有效点进行去中心编码: (P,M,4)(P, M, 4)(P,M,4) -> (P,M,2)(P, M, 2)(P,M,2)
    • 合并编码: 将原始的(P,M,4)(P, M, 4)(P,M,4)同去均值编码和去中心编码的结果进行cat, 得到(P,M,9)(P, M, 9)(P,M,9)的向量。这里有两点需要注意: (1)每个Pillar中只对有效点(npoints_per_pillar)进行操作, 即(0, 0, 0, 0)还是保持(0, 0, 0, 0); (2)这应该是一个trick, 把9维编码向量中的前2维换成去中心编码的向量, 详情见https://github.com/open-mmlab/mmdetection3d/issues/1150。
    • 进行embedding(卷积核池化): (P,M,9)(P, M, 9)(P,M,9) -> (P,M,64)(P, M, 64)(P,M,64) -> (P,64)(P, 64)(P,64)
    • Pillar scatter: 根据Pillars在map中的位置(coors), 将PPP个pillars的特征scatter到(432, 496)的特征图上(没有Pillar的位置补0向量), 得到(64,496,432)(64, 496, 432)(64,496,432)的特征图, 这里不妨记为(C,H,W)(C,H, W)(C,H,W)

    数据shape的变化: (P,M,4)(P, M, 4)(P,M,4) -> (C,H,W)(C, H, W)(C,H,W)

  • Backbone

    在得到了(C,H,W)(C, H, W)(C,H,W)的特征图后, Backbone及接下来的Neck, Head都是在2D上进行操作了,基本是Conv2d + BN + ReLU的组合,所以接下来主要介绍tensor的shape变化。

    • block1: (C,H,W)(C, H, W)(C,H,W) -> (C,H/2,W/2)(C, H/2, W/2)(C,H/2,W/2), 即 $$ -(64, 496, 432)> (64,248,216)(64, 248, 216)(64,248,216)
    • block2: (C,H/2,W/2)(C, H/2, W/2)(C,H/2,W/2) -> (2∗C,H/4,W/4)(2*C, H/4, W/4)(2C,H/4,W/4), 即 (64,248,216)(64, 248, 216)(64,248,216) -> (128,124,108)(128, 124, 108)(128,124,108)
    • block3: (2∗C,H/4,W/4)(2*C, H/4, W/4)(2C,H/4,W/4) -> (4∗C,H/8,W/8)(4*C, H/8, W/8)(4C,H/8,W/8), 即 (128,124,108)(128, 124, 108)(128,124,108) -> (256,62,54)(256, 62, 54)(256,62,54)

    数据shape的变化: (C,H,W)(C, H, W)(C,H,W) -> [(C,H/2,W/2),(2∗C,H/4,W/4),(4∗C,H/8,W/8)][(C, H/2, W/2), (2*C, H/4, W/4), (4*C, H/8, W/8)][(C,H/2,W/2),(2C,H/4,W/4),(4C,H/8,W/8)]

  • Neck

    • decoder1: (C,H/2,W/2)(C, H/2, W/2)(C,H/2,W/2) -> (2∗C,H/2,W/2)(2*C, H/2, W/2)(2C,H/2,W/2)
    • decoder2: (2∗C,H/4,W/4)(2*C, H/4, W/4)(2C,H/4,W/4) -> (2∗C,H/2,W/2)(2*C, H/2, W/2)(2C,H/2,W/2)
    • decoder3: (4∗C,H/8,W/8)(4*C, H/8, W/8)(4C,H/8,W/8) -> (2∗C,H/2,W/2)(2*C, H/2, W/2)(2C,H/2,W/2)
    • cat: $$ -[(2C, H/2, W/2), (2C, H/2, W/2), (2*C, H/2, W/2)]> (6∗C,H/2,W/2)(6*C, H/2, W/2)(6C,H/2,W/2)。此时,得到的特征图为 (384,248,216)(384, 248, 216)(384,248,216)

    数据shape的变化: [(C,H/2,W/2),(2∗C,H/4,W/4),(4∗C,H/8,W/8)][(C, H/2, W/2), (2*C, H/4, W/4), (4*C, H/8, W/8)][(C,H/2,W/2),(2C,H/4,W/4),(4C,H/8,W/8)] -> (6∗C,H/2,W/2)(6*C, H/2, W/2)(6C,H/2,W/2)

  • Head

    PointPillars共有3个不同尺寸的anchors(详情见2.2小节), 每个尺寸的anchor有2个角度, 因此共有6个anchors。网络训练了3个类别: Pedestrian, Cyclist和Car。

    • 类别分类branch: (6∗C,H/2,W/2)(6*C, H/2, W/2)(6C,H/2,W/2) -> (6∗3,H/2,W/2)(6*3, H/2, W/2)(63,H/2,W/2), 即(384,248,216)(384, 248, 216)(384,248,216) -> (18,248,216)(18, 248, 216)(18,248,216)
    • bbox回归branch: (6∗C,H/2,W/2)(6*C, H/2, W/2)(6C,H/2,W/2) -> (6∗7,H/2,W/2)(6*7, H/2, W/2)(67,H/2,W/2), 即(384,248,216)(384, 248, 216)(384,248,216) -> (42,248,216)(42, 248, 216)(42,248,216)
    • 朝向分类branch: (6∗C,H/2,W/2)(6*C, H/2, W/2)(6C,H/2,W/2) -> (6∗2,H/2,W/2)(6*2, H/2, W/2)(62,H/2,W/2), 即(384,248,216)(384, 248, 216)(384,248,216) -> (12,248,216)(12, 248, 216)(12,248,216)

    数据shape的变化: (6∗C,H/2,W/2)(6*C, H/2, W/2)(6C,H/2,W/2) -> [(6∗3,H/2,W/2),(6∗7,H/2,W/2),(6∗2,H/2,W/2)][(6*3, H/2, W/2), (6*7, H/2, W/2), (6*2, H/2, W/2)][(63,H/2,W/2),(67,H/2,W/2),(62,H/2,W/2)]

2.2 GT值生成

Head的3个分支基于anchor分别预测了类别, bbox框(相对于anchor的偏移量和尺寸比)和旋转角度的类别, 那么在训练时, 如何得到每一个anchor对应的GT值呢 ? 相关代码见model/anchors.py

  • Anchor生成

    针对3个不同的类别, anchor共包含预先设置了3个尺寸: [0.6, 0.8, 1.73], [0.6, 1.76, 1.73] 和 [1.6, 3.9, 1.56], 2个旋转弧度: 0和π2\frac{\pi}{2}2π。在尺寸为(H/2,W/2)(H/2, W/2)(H/2,W/2)的特征图上每一个位置上放置3*2个anchors, 因此得到shape为(H/2,W/2,3,2,7)的anchortensor,即anchortensor的shape为(H/2, W/2, 3, 2, 7)的anchor tensor, 即anchor tensor的shape为(H/2,W/2,3,2,7)anchortensor,anchortensorshape(248, 216, 3, 2, 7)。

  • Anchors和Gt_bboxes的对应

    这里以尺寸为[0.6, 0.8, 1.73]的anchor为例, 首先将nnn个gt_bboxes与248∗216∗2248 * 216 * 22482162个anchors进行iou的计算, 并依次划分正负anchors:

    • 正anchor: (1) 如果anchor与所有的gt_bboxes中的最大iou大于pos_iou_thr(0.5), 那么此anchor为正anchor, 且此anchor负责与其有最大iou的gt_bbox (类别, bbox框, 旋转角度的类别); (2) 对每一个gt_bbox, 选择与其有最大iou的anchor, 如果其iou大于min_iou_thr(0.35), 那么此anchor为正anchor, 且此anchor对该gt_bbox负责(类别, bbox框, 旋转角度的类别)。
    • 负anchor: 如果anchor与所有的gt_bboxes中最大iou小于neg_iou_thr(0.35), 那么此anchor为负anchor。

    除了正anchors和负anchors外, 其实还有一些不属于两者的anchors, 即与gt_bboxes的最大iou在0.35-0.5中间的anchors。这里对某一个样本进行了统计, 直观的看一下不同anchors之间的比例: (正anchors, 负anchors, 其它anchors) = (23, 107083, 30)。可以看到: 大部分都是负anchors, 且正负anchors的比例相差很大(后面可以看到focal loss在这里发挥的巨大作用了)

    另外, 尺寸为[0.6, 1.76, 1.73]的anchor: pos_iou_thr=0.5, neg_iou_thr=0.35, min_iou_thr=0.35; 尺寸为[1.6, 3.9, 1.56]的anchor: pos_iou_thr=0.6, neg_iou_thr=0.45, min_iou_thr=0.45。

  • Head输出的GT值

    经过Anchors和Gt_bboxes的对应, 我们知道哪些是正anchors, 哪些是负anchors; 并且知道正anchor与哪个gt_bbox对应。

    • 类别分类: 正负anchors参与类别分类的监督。 此处的输出是3个sigmoid的结果, 即该anchor是第0, 1, 2类的置信度。负anchor的GT值是(0, 0, 0)。正anchor的GT值是(0, 0, 1)或(0, 1, 0)或(1, 0, 0)。

    • bbox回归: 正anchors参与bbox回归的监督。

      对于anchor (xa,ya,za,wa,la,ha,θa)(x^a, y^a, z^a, w^a, l^a, h^a, \theta^a)(xa,ya,za,wa,la,ha,θa)和其对应的gt_bbox (xgt,ygt,zgt,wgt,lgt,hgt,θgt)(x^{gt}, y^{gt}, z^{gt}, w^{gt}, l^{gt}, h^{gt}, \theta^{gt})(xgt,ygt,zgt,wgt,lgt,hgt,θgt), 模型预测的gt bbox与anchor的位置偏移量和尺寸比:

      Δx=xgt−xada,Δy=ygt−yada,Δz=zgt−zaha,Δw=log⁡wgtwa,Δl=log⁡lgtla,Δh=log⁡hgtha,Δθ=sin⁡(θgt−θa),\Delta x = \frac{x^{gt} - x^a}{d^a}, \Delta y = \frac{y^{gt} - y^a}{d^a}, \Delta z=\frac{z^{gt} - z^a}{h^a},\\\Delta w = \log \frac{w^{gt}}{w^a}, \Delta l = \log \frac{l^{gt}}{l^a}, \Delta h = \log \frac{h^{gt}}{h^a}, \\\Delta \theta = \sin(\theta^{gt} - \theta^a),Δx=daxgtxa,Δy=daygtya,Δz=hazgtza,Δw=logwawgt,Δl=loglalgt,Δh=loghahgt,Δθ=sin(θgtθa),

      其中da=((wa)2+(la)2)d^a = \sqrt{((w^a)^2 + (l^a)^2)}da=((wa)2+(la)2)

    • 朝向分类: 正anchors参与角度分类的监督。 若anchor对应的gt_bbox的角度在[0,π][0, \pi][0,π], 则label为0; 若anchor对应的gt_bbox的角度在[π,2∗π)[\pi, 2*\pi)[π,2π), 则label为1。需要朝向分类是因为, 如果两个车的朝向相差180°, 那么sin⁡(θgt−θa)=sin⁡((θgt+π)−θa)\sin(\theta^{gt} - \theta^a) = \sin((\theta^{gt} + \pi) - \theta^a)sin(θgtθa)=sin((θgt+π)θa), 即回归的Δθ\Delta \thetaΔθ是相同的, 因为不能区分车的朝向。

2.3 损失函数和训练

现在知道了类别分类head, bbox回归head和朝向分类head的预测值和GT值, 接下来介绍损失函数。相关代码见loss/loss.py

  • 类别分类loss: Focal Loss

    FL(pt)=−αt(1−pt)γlog⁡(pt)FL(p_t) = -\alpha_t(1-p_t)^\gamma\log (p_t)FL(pt)=αt(1pt)γlog(pt)

    αt={α,y=1,1−α,y=0.,pt={p,y=1,1−p,y=0.\alpha_t = \left\{\begin{matrix} \alpha, y = 1, \\ 1 - \alpha, y = 0. \end{matrix} \right., p_t = \left\{\begin{matrix} p, y = 1, \\ 1 - p, y = 0. \end{matrix} \right.αt={α,y=1,1α,y=0.,pt={p,y=1,1p,y=0.

    其中α=0.25,γ=2.0\alpha=0.25, \gamma=2.0α=0.25,γ=2.0

    前面提到正负anchors的数量极不平衡, 我在这里测试了一下Focal Loss对于分类loss的影响(batch_size=6)。如下表所示, 经过了Focal Loss (FL), 完全逆转了正负anchors在分类loss中发挥的作用。太强了。这里有一篇博客介绍Focal Loss很详细: https://zhuanlan.zhihu.com/p/82148525。

    # 正anchors # 负anchors 正anchors Loss 负anchors Loss
    wo. FL 938 5780509 4416.1719 58345.1328
    w. FL 938 5780509 1083.7280 4.7090
  • 回归loss: SmoothL1 Loss

    L(xn,yn)={0.5(xn−yn)2/β,∣xn−yn∣<β,∣xn−yn∣−0.5β,otherwise.L(x_n, y_n) = \left\{\begin{matrix} 0.5(x_n - y_n)^2/\beta, |x_n - y_n| < \beta, \\ |x_n - y_n| - 0.5 \beta, \text{otherwise}. \end{matrix} \right.L(xn,yn)={0.5(xnyn)2/β,xnyn<β,xnyn0.5β,otherwise.

    这里 β=19\beta=\frac{1}{9}β=91

  • 朝向分类loss: Cross Entropy Loss

    L(y,y^)=−∑i=1ny^ilog⁡yiL(y, \hat y) = -\sum_{i=1}^n\hat y_i \log y_iL(y,y^)=i=1ny^ilogyi

总loss = 1.0*类别分类loss + 2.0*回归loss + 2.0*朝向分类loss。

模型训练: 优化器torch.optim.AdamW(), 学习率的调整torch.optim.lr_scheduler.OneCycleLR(); 模型共训练160epoches。

三、单帧预测和可视化

基于Head的预测值和anchors, 如何得到最后的候选框呢 ? 相关代码见model/pointpillars.py。一般经过以下几个步骤:

  1. 基于预测的类别分数的scores, 选出nms_pre (100) 个anchors: 每一个anchor具有3个scores, 分别对应属于每一类的概率, 这里选择这3个scores中最大值作为该anchor的score; 根据每个anchor的score降序排序, 选择anchors。

  2. 根据选择的anchors和对其预测的bbox回归值, 解码成bboxes: 以某个anchor(xa,ya,za,wa,la,ha,θa)(x^a, y^a, z^a, w^a, l^a, h^a, \theta^a)(xa,ya,za,wa,la,ha,θa)和预测值(Δx,Δy,Δz,Δw,Δl,Δh,Δθ)(\Delta x, \Delta y, \Delta z, \Delta w, \Delta l, \Delta h, \Delta \theta)(Δx,Δy,Δz,Δw,Δl,Δh,Δθ)为例:
    xp=Δx⋅da+xa,yp=Δy⋅da+ya,zp=Δz⋅ha+za,wp=wa⋅eΔw,lp=la⋅eΔl,hp=ha⋅eΔh,θp=Δθ+θax^p = \Delta x \cdot d^a + x^a, y^p = \Delta y \cdot d^a + y^a, z^p = \Delta z \cdot h^a + z^a, \\w^p = w^a \cdot e^{\Delta w}, l^p = l^a \cdot e^{\Delta l}, h^p = h^a \cdot e^{\Delta h}, \theta^p = \Delta \theta + \theta^axp=Δxda+xa,yp=Δyda+ya,zp=Δzha+za,wp=waeΔw,lp=laeΔl,hp=haeΔh,θp=Δθ+θa

  3. 逐类进行以下操作:

  • 过滤掉类别score 小于 score_thr (0.1) 的bboxes
  • 基于nms_thr (0.01), nms过滤掉重叠框:
    1. 根据score对bboxes从高到低进行排序, 设bboxes集合为B\mathbf BB;
    2. 建立空的bboxes集合 D\mathbf DD;
    3. 选择score最高的bbox b\mathbf bb加入到D\mathbf DD;
    4. 计算B\mathbf BB中剩余bboxes与b\mathbf bb的iou, 过滤掉B\mathbf BB中iou大于nms_thr的bboxes;
    5. 重复3, 4, 直到B\mathbf BB为空集。
  • 根据朝向分类的结果对θp\theta^pθp进行矫正:
    • 若朝向分类的结果是0, 则将θp\theta^pθp调整到[0,π][0, \pi][0,π];
    • 若朝向分类的结果是1, 则将θp\theta^pθp调整到[−π,0][ -\pi, 0][π,0]
  1. 过滤更多的框: 为了避免剩余bboxes仍然过多, 超过max_num (50), 又根据分类score值, 选择出了top max_num个bboxes。

  2. 根据Image size和Lidar range过滤bboxes:

  • Image size 过滤 (可选): 若知道Lidar对应的image size和相对应的内/外参信息等, 则将3d bbox的顶点映射到2d image, 如果在2d的这些顶点仍然包含在image里, 则保存该bbox; 否则, 过滤掉该bbox。
  • Lidar range 过滤: 选择(x,y,z)(x, y, z)(x,y,z)在Lidar range ([0, -40, -3, 70.4, 40, 0.0]) 的bboxes。

至此, 完成了单帧点云的预测过程: 输入是X∈RN×c(c=4)\mathbf X \in \mathbb R^{N \times c} (c=4)XRN×c(c=4), 输出是n个bboxes: Lidar_bboxes ∈Rn×7\in R^{n \times 7}Rn×7, Labels ∈Rn×1\in R^{n \times 1}Rn×1 和 Scores ∈Rn×1\in R^{n \times 1}Rn×1

另外, 基于Open3d实现了在Lidar和Image里3d bboxes的可视化, 相关代码见test.pyutils/vis_o3d.py。下图是对验证集中id=000134的数据进行可视化的结果。


四、模型评估

评估指标同2D检测类似, 也是采用AP, 即Precison-Recall曲线下的面积。不同的是, 在3D中可以计算3D bbox, BEV bbox 和 (2D bbox, AOS)的AP。

先说明一下AOS指标和Difficulty的定义。

AOS(average orientation similarity): 1+cos⁡(αgt−αp)2\frac{1 + \cos(\alpha^{gt} - \alpha^p)}{2}21+cos(αgtαp), 用于评估朝向, 常于2D Bbox一块评估(因为2D Bbox在评估时是基于axis-aligned的bbox的)。

Difficulty: 根据2d框的高度, 遮挡程度和截断程度, 把bbox分为 difficulty=0, 1, 2 或 其它。相关定义具体查看代码pre_process_kitti.py#L16-32

这里以3D bbox为例, 介绍类别=Car, difficulty=1 AP的计算。注意, difficulty=1的数据实际上是指difficulty<=1的数据; 另外这里主要介绍大致步骤, 具体实现见evaluate.py

  1. 计算3D IoU (utils/process.py iou3d(bboxes1, bboxes2)), 用于判定一个det bbox是否和gt bbox匹配上 (IoU > 0.7)。

  2. 根据类别=Car, difficulty=1选择gt bboxes和det bboxes。

  • gt bboxes: 选择类别=Car, difficulty<=1的bboxes;
  • det bboxes: 选择预测类别=Car的bboxes。
  1. 确定P-R曲线中的点对(Pi, Ri)对应的score阈值。
  • 建立空的scores集合S\mathbf SS;
  • 对于每一个gt bbox gb\mathbf {g_b}gb, 选择未被匹配的且与其IoU>0.7中最大的det bbox db\mathbf {d_b}db作为匹配框, 并将db\mathbf {d_b}db标识为已被匹配, 且将db\mathbf {d_b}db的预测score加入到集合S\mathbf SS中; 若没有满足条件的db\mathbf {d_b}db, 则无需将db\mathbf {d_b}db的预测score加入到集合S\mathbf SS中;
  • 对集合S\mathbf SS中scores进行由高到低排序;
  • 计算gt bboxes的数量, 根据S\mathbf SS计算Recall在0, 1/40, 2/40, …, $|\mathbf S| / |\text{gt bboxes}| $ 的scores, 构成阈值集合S∗\mathbf S^*S
  1. PR曲线和AP的计算。
  • 针对阈值集合S∗\mathbf S^*S中的每一个si\mathbf s_isi, 计算一组(Pi, Ri):

    • 匹配: 对于gt bbox gb\mathbf {g_b}gb, 选择未被匹配的, 预测score >= si\mathbf s_isi与其IoU>0.7中最大的det bbox db\mathbf {d_b}db作为匹配框, 并将db\mathbf {d_b}db标识为已被匹配;
    • 计算TP: 所有匹配的det bboxes db\mathbf {d_b}db的数量; 如果db\mathbf {d_b}db对应的2D bbox的height不满足difficulty<=1的要求, 则不计入TP。
    • 计算FN: 所有未被匹配的 gt bboxes gb\mathbf {g_b}gb 的数量; 即使gb\mathbf {g_b}gb仅被不满足difficulty<=1要求的db\mathbf {d_b}db匹配, 仍旧不算FN。
    • 计算FP: 所有未被匹配的预测score >= si\mathbf s_isi且height满足difficulty<=1的det bboxes的数量; 对于2D Bbox AP的评估, 需要注意的是, 如果db\mathbf {d_b}db匹配到了Dontcare的gt bboxes, 不算在FP(标注为Dontcare的有些是比较远的, 在2D中可以看到, 但在3D中是不可见的; 因此在2D中进行了标注, 但在3D中未进行标注)。
    • 计算Precision: Pi = TP / (TP + FP), Recall: Ri = TP / (TP + FN).
  • PR曲线和AP计算

    基于点对(Pi, Ri)绘制曲线如下图绿色曲线所示, 曲线下的面积记为AP。但在实现的时候使用了11 recall positions方式的进行评估, 如下图红色折线所示。

    mAP是求取所有(3个)类别AP的均值。

五、总结

  • 点云检测, 相比于点云中其它任务(分类, 分割和配准等), 逻辑和代码都更加复杂, 但这并不是体现在网络结构上, 更多的是体现在数据增强, Anchors和GT生成, 单帧推理等。
  • 点云检测, 相比于2D图像检测任务, 不同的是坐标系变换, 数据增强(碰撞检测, 点是否在立方体判断等), 斜长方体框IoU的计算等; 评估方式因为考虑到DontCare, difficulty等, 也更加复杂一些.
  • 初次接触基于KITTI的3D检测, 如有理解错误的, 还请指正; 内容太多了, 如有遗漏, 待以后补充。

3D点云 (Lidar)检测入门篇 - PointPillars PyTorch实现相关推荐

  1. 如何提高3D点云目标检测的难例精度?

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 文章导读 本文是一篇将注意力机制应用在点云目标检测中的文章<TANet: Robust 3D O ...

  2. 首个面向自动驾驶领域的3D点云目标检测教程!(单模态+多模态/数据+代码)

    背景介绍 3D检测用于获取物体在三维空间中的位置和类别信息,主要基于点云.双目.单目和多模态数据等方式.其中,点云数据由于具有较为丰富的几何信息,相比于其它单模态数据更为稳定,基于激光雷达点云数据的3 ...

  3. 面向自动驾驶领域的3D点云目标检测方法汇总!(单模态+多模态/数据+代码)

    背景介绍 3D检测用于获取物体在三维空间中的位置和类别信息,主要基于点云.双目.单目和多模态数据等方式.其中,点云数据由于具有较为丰富的几何信息,相比于其它单模态数据更为稳定,基于激光雷达点云数据的3 ...

  4. 面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)...

    背景介绍 3D检测用于获取物体在三维空间中的位置和类别信息,主要基于点云.双目.单目和多模态数据等方式.其中,点云数据由于具有较为丰富的几何信息,相比于其它单模态数据更为稳定,基于激光雷达点云数据的3 ...

  5. 阿里云-云开发平台入门篇——静态网站的全生命周期实战

    静态网站的全生命周期实战 创建应用 开发部署 下线&删除应用 静态网站的全生命周期实战 云开发平台官网:https://workbench.aliyun.com/ 往期文章: 阿里云开发平台普 ...

  6. 3D点云目标检测:MPPNet网络训练waymo数据集

    MPPNet网络训练waymo数据集 一.waymo数据预处理 1.1.waymo数据简介 1.2. waymo数据集预处理 二.训练centerpoint网络 三.训练mppnet网络 四.训练结果 ...

  7. Android推送 百度云推送 入门篇

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/27231237 现在app基本都有推送的功能,于是看了下百度云的推送,官方文档和D ...

  8. 3D点云two-stage目标检测方法优化综述

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 前言 和二维图像目标检测一样,3D点云目标检测除了按照输入模态划分为基于点云.基于单目.基于双目或者是 ...

  9. 3D游戏开发套件指南(入门篇)

    今天将介绍最新的3D游戏开发套件.不论是使用2D还是3D游戏开发套件,都可以在不编写任何代码的情况下,通过设置与拖放便能快捷的实现游戏创意. 指南简介 本指南将引导开发者设置一个空的场景,使用3D游戏 ...

最新文章

  1. XCTF-Reverse:re1
  2. Rider EAP17带来了许多改进但缺乏.NET Core调试功能
  3. python变量/分支/循环/数组/列表/元组/序列
  4. 常用的分隔符有哪三种_三种废水处理方法
  5. maven的仓库、生命周期与插件
  6. 一文学会Python标准库struct序列化与反序列化
  7. iOS---------- Safe Area Layout Guide before iOS 9.0
  8. hive insert into语句 和 insert overwrite语句
  9. 将20M文件从30秒压缩到1秒,我是如何做到的?
  10. 22.哈希表(HashTable)
  11. Oracle查看表空间使用率
  12. SQL Server根据地图坐标经纬度计算距离
  13. C#中的Builder模式
  14. PSM案例《价格敏感度分析》
  15. Python 小白学习之:linux 基础和 python 入门
  16. 如何查看自己电脑开启了哪些端口号
  17. 儿童护眼灯怎么选?儿童护眼灯品牌排行榜
  18. 用c语言求出1加到100的和
  19. 刚兑换的电子优惠券竟被提前消费,原来是黑客做起倒爷生意
  20. Windows10安装开源Mujoco

热门文章

  1. sse——字符串数组
  2. 人体动作识别与评价——区别、联系及研究进展
  3. 细雨湿衣看不见 闲花落地听无声
  4. 如何学习opencv源码
  5. 深度学习(一):卷积运算
  6. 单片机c语言p1口转弯灯实验,单片机p1口转弯灯实验程序
  7. 一起学习CC3200系列教程之CC3200简介
  8. 用python做算法需要哪些技能_成为一名CV算法工程师,你需要具备哪些能力?
  9. vscode 无法输入输出
  10. java使用aspose-cad将CAD的dwg文件转换png等格式