=====================================================

FFmpeg的库函数源代码分析文章列表:

【架构图】

FFmpeg源代码结构图 - 解码

FFmpeg源代码结构图 - 编码

【通用】

FFmpeg 源代码简单分析:av_register_all()

FFmpeg 源代码简单分析:avcodec_register_all()

FFmpeg 源代码简单分析:内存的分配和释放(av_malloc()、av_free()等)

FFmpeg 源代码简单分析:常见结构体的初始化和销毁(AVFormatContext,AVFrame等)

FFmpeg 源代码简单分析:avio_open2()

FFmpeg 源代码简单分析:av_find_decoder()和av_find_encoder()

FFmpeg 源代码简单分析:avcodec_open2()

FFmpeg 源代码简单分析:avcodec_close()

【解码】

图解FFMPEG打开媒体的函数avformat_open_input

FFmpeg 源代码简单分析:avformat_open_input()

FFmpeg 源代码简单分析:avformat_find_stream_info()

FFmpeg 源代码简单分析:av_read_frame()

FFmpeg 源代码简单分析:avcodec_decode_video2()

FFmpeg 源代码简单分析:avformat_close_input()

【编码】

FFmpeg 源代码简单分析:avformat_alloc_output_context2()

FFmpeg 源代码简单分析:avformat_write_header()

FFmpeg 源代码简单分析:avcodec_encode_video()

FFmpeg 源代码简单分析:av_write_frame()

FFmpeg 源代码简单分析:av_write_trailer()

【其它】

FFmpeg源代码简单分析:日志输出系统(av_log()等)

FFmpeg源代码简单分析:结构体成员管理系统-AVClass

FFmpeg源代码简单分析:结构体成员管理系统-AVOption

FFmpeg源代码简单分析:libswscale的sws_getContext()

FFmpeg源代码简单分析:libswscale的sws_scale()

FFmpeg源代码简单分析:libavdevice的avdevice_register_all()

FFmpeg源代码简单分析:libavdevice的gdigrab

【脚本】

FFmpeg源代码简单分析:makefile

FFmpeg源代码简单分析:configure

【H.264】

FFmpeg的H.264解码器源代码简单分析:概述

=====================================================

本文继续上一篇文章《FFmpeg源代码分析:sws_getContext()》的内容,简单分析FFmpeg的图像处理(缩放,YUV/RGB格式转换)类库libswsscale中的sws_scale()函数。libswscale是一个主要用于处理图片像素数据的类库。可以完成图片像素格式的转换,图片的拉伸等工作。有关libswscale的使用可以参考文章:
《最简单的基于FFmpeg的libswscale的示例(YUV转RGB)》

该类库常用的函数数量很少,一般情况下就3个:

sws_getContext():初始化一个SwsContext。

sws_scale():处理图像数据。

sws_freeContext():释放一个SwsContext。

在分析sws_scale()的源代码之前,先简单回顾一下上篇文章中分析得到的两张图。

函数调用结构图

分析得到的libswscale的函数调用关系如下图所示。

Libswscale处理数据流程

Libswscale处理像素数据的流程可以概括为下图。

从图中可以看出,libswscale处理数据有两条最主要的方式:unscaled和scaled。unscaled用于处理不需要拉伸的像素数据(属于比较特殊的情况),scaled用于处理需要拉伸的像素数据。Unscaled只需要对图像像素格式进行转换;而Scaled则除了对像素格式进行转换之外,还需要对图像进行缩放。Scaled方式可以分成以下几个步骤:

XXX to YUV Converter:首相将数据像素数据转换为8bitYUV格式;

Horizontal scaler:水平拉伸图像,并且转换为15bitYUV;

Vertical scaler:垂直拉伸图像;

Output converter:转换为输出像素格式。

sws_scale()

sws_scale()是用于转换像素的函数。它的声明位于libswscale\swscale.h,如下所示。

/*** Scale the image slice in srcSlice and put the resulting scaled* slice in the image in dst. A slice is a sequence of consecutive* rows in an image.** Slices have to be provided in sequential order, either in* top-bottom or bottom-top order. If slices are provided in* non-sequential order the behavior of the function is undefined.** @param c         the scaling context previously created with*                  sws_getContext()* @param srcSlice  the array containing the pointers to the planes of*                  the source slice* @param srcStride the array containing the strides for each plane of*                  the source image* @param srcSliceY the position in the source image of the slice to*                  process, that is the number (counted starting from*                  zero) in the image of the first row of the slice* @param srcSliceH the height of the source slice, that is the number*                  of rows in the slice* @param dst       the array containing the pointers to the planes of*                  the destination image* @param dstStride the array containing the strides for each plane of*                  the destination image* @return          the height of the output slice*/
int sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[],const int srcStride[], int srcSliceY, int srcSliceH,uint8_t *const dst[], const int dstStride[]);

sws_scale()的定义位于libswscale\swscale.c,如下所示。

/*** swscale wrapper, so we don't need to export the SwsContext.* Assumes planar YUV to be in YUV order instead of YVU.*/
int sws_scale(struct SwsContext *c,const uint8_t * const srcSlice[],const int srcStride[], int srcSliceY,int srcSliceH, uint8_t *const dst[],const int dstStride[])
{int i, ret;const uint8_t *src2[4];uint8_t *dst2[4];uint8_t *rgb0_tmp = NULL;//检查输入参数if (!srcStride || !dstStride || !dst || !srcSlice) {av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");return 0;}if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH) {ret = sws_scale(c->cascaded_context[0],srcSlice, srcStride, srcSliceY, srcSliceH,c->cascaded_tmp, c->cascaded_tmpStride);if (ret < 0)return ret;ret = sws_scale(c->cascaded_context[1],(const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH,dst, dstStride);return ret;}memcpy(src2, srcSlice, sizeof(src2));memcpy(dst2, dst, sizeof(dst2));// do not mess up sliceDir if we have a "trailing" 0-size sliceif (srcSliceH == 0)return 0;//检查if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {av_log(c, AV_LOG_ERROR, "bad src image pointers\n");return 0;}if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");return 0;}if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");return 0;}if (c->sliceDir == 0) {if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;}//使用调色板palette的特殊处理?应该不常见if (usePal(c->srcFormat)) {for (i = 0; i < 256; i++) {int r, g, b, y, u, v, a = 0xff;if (c->srcFormat == AV_PIX_FMT_PAL8) {uint32_t p = ((const uint32_t *)(srcSlice[1]))[i];a = (p >> 24) & 0xFF;r = (p >> 16) & 0xFF;g = (p >>  8) & 0xFF;b =  p        & 0xFF;} else if (c->srcFormat == AV_PIX_FMT_RGB8) {r = ( i >> 5     ) * 36;g = ((i >> 2) & 7) * 36;b = ( i       & 3) * 85;} else if (c->srcFormat == AV_PIX_FMT_BGR8) {b = ( i >> 6     ) * 85;g = ((i >> 3) & 7) * 36;r = ( i       & 7) * 36;} else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {r = ( i >> 3     ) * 255;g = ((i >> 1) & 3) * 85;b = ( i       & 1) * 255;} else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {r = g = b = i;} else {av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE);b = ( i >> 3     ) * 255;g = ((i >> 1) & 3) * 85;r = ( i       & 1) * 255;}
#define RGB2YUV_SHIFT 15
#define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);switch (c->dstFormat) {case AV_PIX_FMT_BGR32:
#if !HAVE_BIGENDIANcase AV_PIX_FMT_RGB24:
#endifc->pal_rgb[i]=  r + (g<<8) + (b<<16) + ((unsigned)a<<24);break;case AV_PIX_FMT_BGR32_1:
#if HAVE_BIGENDIANcase AV_PIX_FMT_BGR24:
#endifc->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);break;case AV_PIX_FMT_RGB32_1:
#if HAVE_BIGENDIANcase AV_PIX_FMT_RGB24:
#endifc->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);break;case AV_PIX_FMT_RGB32:
#if !HAVE_BIGENDIANcase AV_PIX_FMT_BGR24:
#endifdefault:c->pal_rgb[i]=  b + (g<<8) + (r<<16) + ((unsigned)a<<24);}}}//Alpha的特殊处理?if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {uint8_t *base;int x,y;rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);if (!rgb0_tmp)return AVERROR(ENOMEM);base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;for (y=0; y<srcSliceH; y++){memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {base[ srcStride[0]*y + x] = 0xFF;}}src2[0] = base;}//XYZ的特殊处理?if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {uint8_t *base;rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);if (!rgb0_tmp)return AVERROR(ENOMEM);base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);src2[0] = base;}if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])for (i = 0; i < 4; i++)memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));// copy strides, so they can safely be modified// sliceDir: 1 = top-to-bottom; -1 = bottom-to-top;if (c->sliceDir == 1) {// slices go from top to bottomint srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],srcStride[3] };int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],dstStride[3] };reset_ptr(src2, c->srcFormat);reset_ptr((void*)dst2, c->dstFormat);/* reset slice direction at end of frame */if (srcSliceY + srcSliceH == c->srcH)c->sliceDir = 0;//关键:调用ret = c->swscale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,dstStride2);} else {// slices go from bottom to top => we flip the image internallyint srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],-srcStride[3] };int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],-dstStride[3] };src2[0] += (srcSliceH - 1) * srcStride[0];if (!usePal(c->srcFormat))src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];src2[3] += (srcSliceH - 1) * srcStride[3];dst2[0] += ( c->dstH                         - 1) * dstStride[0];dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];dst2[3] += ( c->dstH                         - 1) * dstStride[3];reset_ptr(src2, c->srcFormat);reset_ptr((void*)dst2, c->dstFormat);/* reset slice direction at end of frame */if (!srcSliceY)c->sliceDir = 0;//关键:调用ret = c->swscale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,srcSliceH, dst2, dstStride2);}if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {/* replace on the same data */rgb48Toxyz12(c, (uint16_t*)dst2[0], (const uint16_t*)dst2[0], dstStride[0]/2, ret);}av_free(rgb0_tmp);return ret;
}

从sws_scale()的定义可以看出,它封装了SwsContext中的swscale()(注意这个函数中间没有“_”)。函数最重要的一句代码就是“c->swscale()”。除此之外,函数还做了一些增加“兼容性”的一些处理。函数的主要步骤如下所示。

1.检查输入的图像参数的合理性。

这一步骤首先检查输入输出的参数是否为空,然后通过调用check_image_pointers()检查输入输出图像的内存是否正确分配。check_image_pointers()的定义如下所示。

static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,const int linesizes[4])
{const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);int i;for (i = 0; i < 4; i++) {int plane = desc->comp[i].plane;if (!data[plane] || !linesizes[plane])return 0;}return 1;
}

从check_image_pointers()的定义可以看出,在特定像素格式前提下,如果该像素格式应该包含像素的分量为空,就返回0,否则返回1。
2.如果输入像素数据中使用了“调色板”(palette),则进行一些相应的处理。这一步通过函数usePal()来判定。usePal()的定义如下。

static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
{const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);av_assert0(desc);return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
}

从定义可以看出该函数通过判定AVPixFmtDescriptor中的flag是否包含AV_PIX_FMT_FLAG_PAL来断定像素格式是否使用了“调色板”。
3.其它一些特殊格式的处理,比如说Alpha,XYZ等的处理(这方面没有研究过)。
4.如果输入的图像的扫描方式是从底部到顶部的(一般情况下是从顶部到底部),则将图像进行反转。
5.调用SwsContext中的swscale()。

SwsContext中的swscale()

swscale这个变量的类型是SwsFunc,实际上就是一个函数指针。它是整个类库的核心。当我们从外部调用swscale()函数的时候,实际上就是调用了SwsContext中的这个名称为swscale的变量(注意外部函数接口和这个内部函数指针的名字是一样的,但不是一回事)。
可以看一下SwsFunc这个类型的定义:

typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],int srcStride[], int srcSliceY, int srcSliceH,uint8_t *dst[], int dstStride[]);

可以看出SwsFunc的定义的参数类型和libswscale类库外部接口函数swscale()的参数类型一模一样。
在libswscale中,该指针的指向可以分成2种情况:

1.图像没有伸缩的时候,指向专有的像素转换函数

2.图像有伸缩的时候,指向swscale()函数。

在调用sws_getContext()初始化SwsContext的时候,会在其子函数sws_init_context()中对swscale指针进行赋值。如果图像没有进行拉伸,则会调用ff_get_unscaled_swscale()对其进行赋值;如果图像进行了拉伸,则会调用ff_getSwsFunc()对其进行赋值。下面分别看一下这2种情况。

没有拉伸--专有的像素转换函数

如果图像没有进行拉伸,则会调用ff_get_unscaled_swscale()对SwsContext的swscale进行赋值。上篇文章中记录了这个函数,在这里回顾一下。

ff_get_unscaled_swscale()

ff_get_unscaled_swscale()的定义如下。

void ff_get_unscaled_swscale(SwsContext *c)
{const enum AVPixelFormat srcFormat = c->srcFormat;const enum AVPixelFormat dstFormat = c->dstFormat;const int flags = c->flags;const int dstH = c->dstH;int needsDither;needsDither = isAnyRGB(dstFormat) &&c->dstFormatBpp < 24 &&(c->dstFormatBpp < c->srcFormatBpp || (!isAnyRGB(srcFormat)));/* yv12_to_nv12 */if ((srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUVA420P) &&(dstFormat == AV_PIX_FMT_NV12 || dstFormat == AV_PIX_FMT_NV21)) {c->swscale = planarToNv12Wrapper;}/* nv12_to_yv12 */if (dstFormat == AV_PIX_FMT_YUV420P &&(srcFormat == AV_PIX_FMT_NV12 || srcFormat == AV_PIX_FMT_NV21)) {c->swscale = nv12ToPlanarWrapper;}/* yuv2bgr */if ((srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUV422P ||srcFormat == AV_PIX_FMT_YUVA420P) && isAnyRGB(dstFormat) &&!(flags & SWS_ACCURATE_RND) && (c->dither == SWS_DITHER_BAYER || c->dither == SWS_DITHER_AUTO) && !(dstH & 1)) {c->swscale = ff_yuv2rgb_get_func_ptr(c);}if (srcFormat == AV_PIX_FMT_YUV410P && !(dstH & 3) &&(dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P) &&!(flags & SWS_BITEXACT)) {c->swscale = yvu9ToYv12Wrapper;}/* bgr24toYV12 */if (srcFormat == AV_PIX_FMT_BGR24 &&(dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P) &&!(flags & SWS_ACCURATE_RND))c->swscale = bgr24ToYv12Wrapper;/* RGB/BGR -> RGB/BGR (no dither needed forms) */if (isAnyRGB(srcFormat) && isAnyRGB(dstFormat) && findRgbConvFn(c)&& (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))c->swscale = rgbToRgbWrapper;if ((srcFormat == AV_PIX_FMT_GBRP && dstFormat == AV_PIX_FMT_GBRAP) ||(srcFormat == AV_PIX_FMT_GBRAP && dstFormat == AV_PIX_FMT_GBRP))c->swscale = planarRgbToplanarRgbWrapper;#define isByteRGB(f) (             \f == AV_PIX_FMT_RGB32   || \f == AV_PIX_FMT_RGB32_1 || \f == AV_PIX_FMT_RGB24   || \f == AV_PIX_FMT_BGR32   || \f == AV_PIX_FMT_BGR32_1 || \f == AV_PIX_FMT_BGR24)if (srcFormat == AV_PIX_FMT_GBRP && isPlanar(srcFormat) && isByteRGB(dstFormat))c->swscale = planarRgbToRgbWrapper;if ((srcFormat == AV_PIX_FMT_RGB48LE  || srcFormat == AV_PIX_FMT_RGB48BE  ||srcFormat == AV_PIX_FMT_BGR48LE  || srcFormat == AV_PIX_FMT_BGR48BE  ||srcFormat == AV_PIX_FMT_RGBA64LE || srcFormat == AV_PIX_FMT_RGBA64BE ||srcFormat == AV_PIX_FMT_BGRA64LE || srcFormat == AV_PIX_FMT_BGRA64BE) &&(dstFormat == AV_PIX_FMT_GBRP9LE  || dstFormat == AV_PIX_FMT_GBRP9BE  ||dstFormat == AV_PIX_FMT_GBRP10LE || dstFormat == AV_PIX_FMT_GBRP10BE ||dstFormat == AV_PIX_FMT_GBRP12LE || dstFormat == AV_PIX_FMT_GBRP12BE ||dstFormat == AV_PIX_FMT_GBRP14LE || dstFormat == AV_PIX_FMT_GBRP14BE ||dstFormat == AV_PIX_FMT_GBRP16LE || dstFormat == AV_PIX_FMT_GBRP16BE ||dstFormat == AV_PIX_FMT_GBRAP16LE || dstFormat == AV_PIX_FMT_GBRAP16BE ))c->swscale = Rgb16ToPlanarRgb16Wrapper;if ((srcFormat == AV_PIX_FMT_GBRP9LE  || srcFormat == AV_PIX_FMT_GBRP9BE  ||srcFormat == AV_PIX_FMT_GBRP16LE || srcFormat == AV_PIX_FMT_GBRP16BE ||srcFormat == AV_PIX_FMT_GBRP10LE || srcFormat == AV_PIX_FMT_GBRP10BE ||srcFormat == AV_PIX_FMT_GBRP12LE || srcFormat == AV_PIX_FMT_GBRP12BE ||srcFormat == AV_PIX_FMT_GBRP14LE || srcFormat == AV_PIX_FMT_GBRP14BE ||srcFormat == AV_PIX_FMT_GBRAP16LE || srcFormat == AV_PIX_FMT_GBRAP16BE) &&(dstFormat == AV_PIX_FMT_RGB48LE  || dstFormat == AV_PIX_FMT_RGB48BE  ||dstFormat == AV_PIX_FMT_BGR48LE  || dstFormat == AV_PIX_FMT_BGR48BE  ||dstFormat == AV_PIX_FMT_RGBA64LE || dstFormat == AV_PIX_FMT_RGBA64BE ||dstFormat == AV_PIX_FMT_BGRA64LE || dstFormat == AV_PIX_FMT_BGRA64BE))c->swscale = planarRgb16ToRgb16Wrapper;if (av_pix_fmt_desc_get(srcFormat)->comp[0].depth_minus1 == 7 &&isPackedRGB(srcFormat) && dstFormat == AV_PIX_FMT_GBRP)c->swscale = rgbToPlanarRgbWrapper;if (isBayer(srcFormat)) {if (dstFormat == AV_PIX_FMT_RGB24)c->swscale = bayer_to_rgb24_wrapper;else if (dstFormat == AV_PIX_FMT_YUV420P)c->swscale = bayer_to_yv12_wrapper;else if (!isBayer(dstFormat)) {av_log(c, AV_LOG_ERROR, "unsupported bayer conversion\n");av_assert0(0);}}/* bswap 16 bits per pixel/component packed formats */if (IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_BGGR16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_RGGB16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_GBRG16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_GRBG16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR444) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR48)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGRA64) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR555) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR565) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGRA64) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GRAY16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YA16)   ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP9)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP10) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP12) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP14) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRAP16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB444) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB48)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGBA64) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB555) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB565) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGBA64) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_XYZ12)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P9)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P10) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P12) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P14) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P9)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P10) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P12) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P14) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P16) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P9)  ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P10) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P12) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P14) ||IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P16))c->swscale = packed_16bpc_bswap;if (usePal(srcFormat) && isByteRGB(dstFormat))c->swscale = palToRgbWrapper;if (srcFormat == AV_PIX_FMT_YUV422P) {if (dstFormat == AV_PIX_FMT_YUYV422)c->swscale = yuv422pToYuy2Wrapper;else if (dstFormat == AV_PIX_FMT_UYVY422)c->swscale = yuv422pToUyvyWrapper;}/* LQ converters if -sws 0 or -sws 4*/if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) {/* yv12_to_yuy2 */if (srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUVA420P) {if (dstFormat == AV_PIX_FMT_YUYV422)c->swscale = planarToYuy2Wrapper;else if (dstFormat == AV_PIX_FMT_UYVY422)c->swscale = planarToUyvyWrapper;}}if (srcFormat == AV_PIX_FMT_YUYV422 &&(dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P))c->swscale = yuyvToYuv420Wrapper;if (srcFormat == AV_PIX_FMT_UYVY422 &&(dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P))c->swscale = uyvyToYuv420Wrapper;if (srcFormat == AV_PIX_FMT_YUYV422 && dstFormat == AV_PIX_FMT_YUV422P)c->swscale = yuyvToYuv422Wrapper;if (srcFormat == AV_PIX_FMT_UYVY422 && dstFormat == AV_PIX_FMT_YUV422P)c->swscale = uyvyToYuv422Wrapper;#define isPlanarGray(x) (isGray(x) && (x) != AV_PIX_FMT_YA8 && (x) != AV_PIX_FMT_YA16LE && (x) != AV_PIX_FMT_YA16BE)/* simple copy */if ( srcFormat == dstFormat ||(srcFormat == AV_PIX_FMT_YUVA420P && dstFormat == AV_PIX_FMT_YUV420P) ||(srcFormat == AV_PIX_FMT_YUV420P && dstFormat == AV_PIX_FMT_YUVA420P) ||(isPlanarYUV(srcFormat) && isPlanarGray(dstFormat)) ||(isPlanarYUV(dstFormat) && isPlanarGray(srcFormat)) ||(isPlanarGray(dstFormat) && isPlanarGray(srcFormat)) ||(isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat) &&c->chrDstHSubSample == c->chrSrcHSubSample &&c->chrDstVSubSample == c->chrSrcVSubSample &&dstFormat != AV_PIX_FMT_NV12 && dstFormat != AV_PIX_FMT_NV21 &&srcFormat != AV_PIX_FMT_NV12 && srcFormat != AV_PIX_FMT_NV21)){if (isPacked(c->srcFormat))c->swscale = packedCopyWrapper;else /* Planar YUV or gray */c->swscale = planarCopyWrapper;}if (ARCH_PPC)ff_get_unscaled_swscale_ppc(c);
//     if (ARCH_ARM)
//         ff_get_unscaled_swscale_arm(c);
}

从代码中可以看出,它根据输入输出像素格式的不同,选择了不同的转换函数。例如YUV420P转换NV12的时候,就会将planarToNv12Wrapper()赋值给SwsContext的swscale指针。

有拉伸--swscale()

如果图像进行了拉伸,则会调用ff_getSwsFunc()对SwsContext的swscale进行赋值。上篇文章中记录了这个函数,在这里回顾一下。

SwsFunc ff_getSwsFunc(SwsContext *c)
{sws_init_swscale(c);if (ARCH_PPC)ff_sws_init_swscale_ppc(c);if (ARCH_X86)ff_sws_init_swscale_x86(c);return swscale;
}

注意,sws_init_context()对SwsContext的swscale进行赋值的语句是:

c->swscale = ff_getSwsFunc(c);

即把ff_getSwsFunc()的返回值赋值给SwsContext的swscale指针;而ff_getSwsFunc()的返回值是一个静态函数,名称就叫做“swscale”。
下面我们看一下这个swscale()静态函数的定义。

static int swscale(SwsContext *c, const uint8_t *src[],int srcStride[], int srcSliceY,int srcSliceH, uint8_t *dst[], int dstStride[])
{/* load a few things into local vars to make the code more readable?* and faster *///注意一下这些参数//以亮度为准const int srcW                   = c->srcW;const int dstW                   = c->dstW;const int dstH                   = c->dstH;//以色度为准const int chrDstW                = c->chrDstW;const int chrSrcW                = c->chrSrcW;const int lumXInc                = c->lumXInc;const int chrXInc                = c->chrXInc;const enum AVPixelFormat dstFormat = c->dstFormat;const int flags                  = c->flags;int32_t *vLumFilterPos           = c->vLumFilterPos;int32_t *vChrFilterPos           = c->vChrFilterPos;int32_t *hLumFilterPos           = c->hLumFilterPos;int32_t *hChrFilterPos           = c->hChrFilterPos;int16_t *hLumFilter              = c->hLumFilter;int16_t *hChrFilter              = c->hChrFilter;int32_t *lumMmxFilter            = c->lumMmxFilter;int32_t *chrMmxFilter            = c->chrMmxFilter;const int vLumFilterSize         = c->vLumFilterSize;const int vChrFilterSize         = c->vChrFilterSize;const int hLumFilterSize         = c->hLumFilterSize;const int hChrFilterSize         = c->hChrFilterSize;int16_t **lumPixBuf              = c->lumPixBuf;int16_t **chrUPixBuf             = c->chrUPixBuf;int16_t **chrVPixBuf             = c->chrVPixBuf;int16_t **alpPixBuf              = c->alpPixBuf;const int vLumBufSize            = c->vLumBufSize;const int vChrBufSize            = c->vChrBufSize;uint8_t *formatConvBuffer        = c->formatConvBuffer;uint32_t *pal                    = c->pal_yuv;yuv2planar1_fn yuv2plane1        = c->yuv2plane1;yuv2planarX_fn yuv2planeX        = c->yuv2planeX;yuv2interleavedX_fn yuv2nv12cX   = c->yuv2nv12cX;yuv2packed1_fn yuv2packed1       = c->yuv2packed1;yuv2packed2_fn yuv2packed2       = c->yuv2packed2;yuv2packedX_fn yuv2packedX       = c->yuv2packedX;yuv2anyX_fn yuv2anyX             = c->yuv2anyX;const int chrSrcSliceY           =                srcSliceY >> c->chrSrcVSubSample;const int chrSrcSliceH           = FF_CEIL_RSHIFT(srcSliceH,   c->chrSrcVSubSample);int should_dither                = is9_OR_10BPS(c->srcFormat) ||is16BPS(c->srcFormat);int lastDstY;/* vars which will change and which we need to store back in the context */int dstY         = c->dstY;int lumBufIndex  = c->lumBufIndex;int chrBufIndex  = c->chrBufIndex;int lastInLumBuf = c->lastInLumBuf;int lastInChrBuf = c->lastInChrBuf;if (!usePal(c->srcFormat)) {pal = c->input_rgb2yuv_table;}if (isPacked(c->srcFormat)) {src[0] =src[1] =src[2] =src[3] = src[0];srcStride[0] =srcStride[1] =srcStride[2] =srcStride[3] = srcStride[0];}srcStride[1] <<= c->vChrDrop;srcStride[2] <<= c->vChrDrop;DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",src[0], srcStride[0], src[1], srcStride[1],src[2], srcStride[2], src[3], srcStride[3],dst[0], dstStride[0], dst[1], dstStride[1],dst[2], dstStride[2], dst[3], dstStride[3]);DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",srcSliceY, srcSliceH, dstY, dstH);DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);if (dstStride[0]&15 || dstStride[1]&15 ||dstStride[2]&15 || dstStride[3]&15) {static int warnedAlready = 0; // FIXME maybe move this into the contextif (flags & SWS_PRINT_INFO && !warnedAlready) {av_log(c, AV_LOG_WARNING,"Warning: dstStride is not aligned!\n""         ->cannot do aligned memory accesses anymore\n");warnedAlready = 1;}}if (   (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15|| (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15|| dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15|| srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15) {static int warnedAlready=0;int cpu_flags = av_get_cpu_flags();if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");warnedAlready=1;}}/* Note the user might start scaling the picture in the middle so this* will not get executed. This is not really intended but works* currently, so people might do it. */if (srcSliceY == 0) {lumBufIndex  = -1;chrBufIndex  = -1;dstY         = 0;lastInLumBuf = -1;lastInChrBuf = -1;}if (!should_dither) {c->chrDither8 = c->lumDither8 = sws_pb_64;}lastDstY = dstY;//逐行循环,一次循环代表处理一行//注意dstY和dstH两个变量for (; dstY < dstH; dstY++) {//色度的和亮度之间的关系const int chrDstY = dstY >> c->chrDstVSubSample;uint8_t *dest[4]  = {dst[0] + dstStride[0] * dstY,dst[1] + dstStride[1] * chrDstY,dst[2] + dstStride[2] * chrDstY,(CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,};int use_mmx_vfilter= c->use_mmx_vfilter;// First line needed as inputconst int firstLumSrcY  = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);// First line needed as inputconst int firstChrSrcY  = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);// Last line needed as inputint lastLumSrcY  = FFMIN(c->srcH,    firstLumSrcY  + vLumFilterSize) - 1;int lastLumSrcY2 = FFMIN(c->srcH,    firstLumSrcY2 + vLumFilterSize) - 1;int lastChrSrcY  = FFMIN(c->chrSrcH, firstChrSrcY  + vChrFilterSize) - 1;int enough_lines;// handle holes (FAST_BILINEAR & weird filters)if (firstLumSrcY > lastInLumBuf)lastInLumBuf = firstLumSrcY - 1;if (firstChrSrcY > lastInChrBuf)lastInChrBuf = firstChrSrcY - 1;av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);DEBUG_BUFFERS("dstY: %d\n", dstY);DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",firstLumSrcY, lastLumSrcY, lastInLumBuf);DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",firstChrSrcY, lastChrSrcY, lastInChrBuf);// Do we have enough lines in this slice to output the dstY lineenough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&lastChrSrcY < FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);if (!enough_lines) {lastLumSrcY = srcSliceY + srcSliceH - 1;lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",lastLumSrcY, lastChrSrcY);}// Do horizontal scaling//水平拉伸//亮度while (lastInLumBuf < lastLumSrcY) {const uint8_t *src1[4] = {src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],};lumBufIndex++;av_assert0(lumBufIndex < 2 * vLumBufSize);av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);//关键:拉伸hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,hLumFilter, hLumFilterPos, hLumFilterSize,formatConvBuffer, pal, 0);if (CONFIG_SWSCALE_ALPHA && alpPixBuf)hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,formatConvBuffer, pal, 1);lastInLumBuf++;DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",lumBufIndex, lastInLumBuf);}//水平拉伸//色度while (lastInChrBuf < lastChrSrcY) {const uint8_t *src1[4] = {src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],};chrBufIndex++;av_assert0(chrBufIndex < 2 * vChrBufSize);av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);// FIXME replace parameters through context struct (some at least)//关键:拉伸if (c->needs_hcscale)hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],chrDstW, src1, chrSrcW, chrXInc,hChrFilter, hChrFilterPos, hChrFilterSize,formatConvBuffer, pal);lastInChrBuf++;DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",chrBufIndex, lastInChrBuf);}// wrap buf index around to stay inside the ring bufferif (lumBufIndex >= vLumBufSize)lumBufIndex -= vLumBufSize;if (chrBufIndex >= vChrBufSize)chrBufIndex -= vChrBufSize;if (!enough_lines)break;  // we can't output a dstY line so let's try with the next slice#if HAVE_MMX_INLINEupdateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,lastInLumBuf, lastInChrBuf);
#endifif (should_dither) {c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];c->lumDither8 = ff_dither_8x8_128[dstY    & 7];}if (dstY >= dstH - 2) {/* hmm looks like we can't use MMX here without overwriting* this array's tail */ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,&yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);use_mmx_vfilter= 0;}{const int16_t **lumSrcPtr  = (const int16_t **)(void*) lumPixBuf  + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;const int16_t **alpSrcPtr  = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?(const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;int16_t *vLumFilter = c->vLumFilter;int16_t *vChrFilter = c->vChrFilter;if (isPlanarYUV(dstFormat) ||(isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 likeconst int chrSkipMask = (1 << c->chrDstVSubSample) - 1;vLumFilter +=    dstY * vLumFilterSize;vChrFilter += chrDstY * vChrFilterSize;//                 av_assert0(use_mmx_vfilter != (
//                                yuv2planeX == yuv2planeX_10BE_c
//                             || yuv2planeX == yuv2planeX_10LE_c
//                             || yuv2planeX == yuv2planeX_9BE_c
//                             || yuv2planeX == yuv2planeX_9LE_c
//                             || yuv2planeX == yuv2planeX_16BE_c
//                             || yuv2planeX == yuv2planeX_16LE_c
//                             || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);if(use_mmx_vfilter){vLumFilter= (int16_t *)c->lumMmxFilter;vChrFilter= (int16_t *)c->chrMmxFilter;}//输出一行水平拉伸过的像素//亮度//是否垂直拉伸?if (vLumFilterSize == 1) {//亮度-不垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);} else {//亮度-垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素yuv2planeX(vLumFilter, vLumFilterSize,lumSrcPtr, dest[0],dstW, c->lumDither8, 0);}//色度//是否垂直拉伸?if (!((dstY & chrSkipMask) || isGray(dstFormat))) {if (yuv2nv12cX) {yuv2nv12cX(c, vChrFilter,vChrFilterSize, chrUSrcPtr, chrVSrcPtr,dest[1], chrDstW);} else if (vChrFilterSize == 1) {//色度-不垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素//注意是2个分量yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);} else {//色度-垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素//注意是2个分量yuv2planeX(vChrFilter,vChrFilterSize, chrUSrcPtr, dest[1],chrDstW, c->chrDither8, 0);yuv2planeX(vChrFilter,vChrFilterSize, chrVSrcPtr, dest[2],chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);}}if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {if(use_mmx_vfilter){vLumFilter= (int16_t *)c->alpMmxFilter;}if (vLumFilterSize == 1) {yuv2plane1(alpSrcPtr[0], dest[3], dstW,c->lumDither8, 0);} else {yuv2planeX(vLumFilter,vLumFilterSize, alpSrcPtr, dest[3],dstW, c->lumDither8, 0);}}} else if (yuv2packedX) {av_assert1(lumSrcPtr  + vLumFilterSize - 1 < (const int16_t **)lumPixBuf  + vLumBufSize * 2);av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);if (c->yuv2packed1 && vLumFilterSize == 1 &&vChrFilterSize <= 2) { // unscaled RGBint chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];//不垂直拉伸-打包模式(packed)-输出一行水平拉伸的像素yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,alpPixBuf ? *alpSrcPtr : NULL,dest[0], dstW, chrAlpha, dstY);} else if (c->yuv2packed2 && vLumFilterSize == 2 &&vChrFilterSize == 2) { // bilinear upscale RGBint lumAlpha = vLumFilter[2 * dstY + 1];int chrAlpha = vChrFilter[2 * dstY + 1];lumMmxFilter[2] =lumMmxFilter[3] = vLumFilter[2 * dstY]    * 0x10001;chrMmxFilter[2] =chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,alpPixBuf ? alpSrcPtr : NULL,dest[0], dstW, lumAlpha, chrAlpha, dstY);} else { // general RGB//垂直拉伸-打包模式(packed)-输出一行水平拉伸的像素yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,lumSrcPtr, vLumFilterSize,vChrFilter + dstY * vChrFilterSize,chrUSrcPtr, chrVSrcPtr, vChrFilterSize,alpSrcPtr, dest[0], dstW, dstY);}} else {av_assert1(!yuv2packed1 && !yuv2packed2);yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,lumSrcPtr, vLumFilterSize,vChrFilter + dstY * vChrFilterSize,chrUSrcPtr, chrVSrcPtr, vChrFilterSize,alpSrcPtr, dest, dstW, dstY);}}}if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) {int length = dstW;int height = dstY - lastDstY;if (is16BPS(dstFormat) || isNBPS(dstFormat)) {const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);fillPlane16(dst[3], dstStride[3], length, height, lastDstY,1, desc->comp[3].depth_minus1,isBE(dstFormat));} elsefillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);}#if HAVE_MMXEXT_INLINEif (av_get_cpu_flags() & AV_CPU_FLAG_MMXEXT)__asm__ volatile ("sfence" ::: "memory");
#endifemms_c();/* store changed local vars back in the context */c->dstY         = dstY;c->lumBufIndex  = lumBufIndex;c->chrBufIndex  = chrBufIndex;c->lastInLumBuf = lastInLumBuf;c->lastInChrBuf = lastInChrBuf;return dstY - lastDstY;
}

可以看出swscale()是一行一行的进行图像缩放工作的。其中每行数据的处理按照“先水平拉伸,然后垂直拉伸”的方式进行处理。具体的实现函数如下所示:
1. 水平拉伸

a) 亮度水平拉伸:hyscale()

b) 色度水平拉伸:hcscale()

2. 垂直拉伸

a) Planar

i. 亮度垂直拉伸-不拉伸:yuv2plane1()

ii. 亮度垂直拉伸-拉伸:yuv2planeX()

iii. 色度垂直拉伸-不拉伸:yuv2plane1()

iv. 色度垂直拉伸-拉伸:yuv2planeX()

b) Packed

i. 垂直拉伸-不拉伸:yuv2packed1()

ii. 垂直拉伸-拉伸:yuv2packedX()

下面具体看看这几个函数的定义。

hyscale()

水平亮度拉伸函数hyscale()的定义位于libswscale\swscale.c,如下所示。

// *** horizontal scale Y line to temp buffer
static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,const uint8_t *src_in[4],int srcW, int xInc,const int16_t *hLumFilter,const int32_t *hLumFilterPos,int hLumFilterSize,uint8_t *formatConvBuffer,uint32_t *pal, int isAlpha)
{void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) =isAlpha ? c->alpToYV12 : c->lumToYV12;void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange;const uint8_t *src = src_in[isAlpha ? 3 : 0];if (toYV12) {toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal);src = formatConvBuffer;} else if (c->readLumPlanar && !isAlpha) {//读取c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table);//赋值src = formatConvBuffer;} else if (c->readAlpPlanar && isAlpha) {c->readAlpPlanar(formatConvBuffer, src_in, srcW, NULL);src = formatConvBuffer;}if (!c->hyscale_fast) {//亮度-水平拉伸c->hyScale(c, dst, dstWidth, src, hLumFilter,hLumFilterPos, hLumFilterSize);} else { // fast bilinear upscale / crap downscalec->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);}//如果需要取值范围的转换(0-255和16-235之间)if (convertRange)convertRange(dst, dstWidth);
}

从hyscale()的源代码可以看出,它的流程如下所示。
1.转换成Y(亮度)
如果SwsContext的toYV12()函数存在,调用用该函数将数据转换为Y。如果该函数不存在,则调用SwsContext的readLumPlanar()读取Y。
2.拉伸
拉伸通过SwsContext的hyScale ()函数完成。如果存在hyscale_fast()方法的话,系统会优先调用hyscale_fast()。
3.转换范围(如果需要的话)
如果需要转换亮度的取值范围(例如需要进行16-235的MPEG标准与0-255的JPEG标准之间的转换),则会调用SwsContext的lumConvertRange ()函数。
上述几个步骤的涉及到的函数在上一篇文章中几经介绍过了,在这里重复一下。

toYV12() [SwsContext ->lumToYV12()]

toYV12()的实现函数是在ff_sws_init_input_funcs()中初始化的。在这里举几种具体的输入像素格式。

输入格式为YUYV422/ YVYU422
ff_sws_init_input_funcs()中,输入像素格式为YUYV422/ YVYU422的时候,toYV12()指向yuy2ToY_c()函数。源代码如下所示。

    case AV_PIX_FMT_YUYV422:case AV_PIX_FMT_YVYU422:case AV_PIX_FMT_YA8:c->lumToYV12 = yuy2ToY_c;break;

yuy2ToY_c()的定义如下所示。

static void yuy2ToY_c(uint8_t *dst, const uint8_t *src, const uint8_t *unused1, const uint8_t *unused2,  int width,uint32_t *unused)
{int i;for (i = 0; i < width; i++)dst[i] = src[2 * i];
}

从yuy2ToY_c()的定义可以看出,该函数取出了所有的Y值(Y值在src[]数组中的下标为偶数)。

输入格式为RGB24
ff_sws_init_input_funcs()中,输入像素格式为RGB24的时候,toYV12()指向yuy2ToY_c()函数。源代码如下所示。

    case AV_PIX_FMT_RGB24:c->lumToYV12 = rgb24ToY_c;break;

rgb24ToY_c()的定义如下所示。

static void rgb24ToY_c(uint8_t *_dst, const uint8_t *src, const uint8_t *unused1, const uint8_t *unused2, int width,uint32_t *rgb2yuv)
{int16_t *dst = (int16_t *)_dst;int32_t ry = rgb2yuv[RY_IDX], gy = rgb2yuv[GY_IDX], by = rgb2yuv[BY_IDX];int i;for (i = 0; i < width; i++) {int r = src[i * 3 + 0];int g = src[i * 3 + 1];int b = src[i * 3 + 2];dst[i] = ((ry*r + gy*g + by*b + (32<<(RGB2YUV_SHIFT-1)) + (1<<(RGB2YUV_SHIFT-7)))>>(RGB2YUV_SHIFT-6));}
}

从rgb24ToY_c()的定义可以看出,该函数通过R、G、B三个元素计算Y的值。其中R、G、B的系数取自于数组rgb2yuv[](这个地方还没有研究);RGB2YUV_SHIFT似乎代表了转换后YUV的位数,取值为15(这个地方也还没有深入看)。

SwsContext -> hyScale ()

SwsContext -> hyScale ()的实现函数是在sws_init_swscale ()中初始化的。可以回顾一下sws_init_swscale ()的定义,如下所示。

static av_cold void sws_init_swscale(SwsContext *c)
{enum AVPixelFormat srcFormat = c->srcFormat;ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX,&c->yuv2nv12cX, &c->yuv2packed1,&c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);ff_sws_init_input_funcs(c);if (c->srcBpc == 8) {if (c->dstBpc <= 14) {c->hyScale = c->hcScale = hScale8To15_c;if (c->flags & SWS_FAST_BILINEAR) {c->hyscale_fast = ff_hyscale_fast_c;c->hcscale_fast = ff_hcscale_fast_c;}} else {c->hyScale = c->hcScale = hScale8To19_c;}} else {c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c: hScale16To15_c;}ff_sws_init_range_convert(c);if (!(isGray(srcFormat) || isGray(c->dstFormat) ||srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))c->needs_hcscale = 1;
}

从sws_init_swscale ()的定义可以看出,ff_sws_init_input_funcs()和ff_sws_init_range_convert()之间的代码完成了hyScale()的初始化。根据srcBpc和dstBpc取值的不同,有几种不同的拉伸函数。根据我的理解,srcBpc代表了输入的每个像素单个分量的位数,dstBpc代表了输出的每个像素单个分量的位数。最常见的像素单个分量的位数是8位。从代码中可以看出,在输入像素单个分量的位数为8位,而且输出像素单个分量的位数也为8位的时候,SwsContext 的 hyScale ()会指向hScale8To15_c()函数。

hScale8To15_c()

hScale8To15_c()的定义如下所示。有关这个方面的代码还没有详细研究,日后再作补充。

// bilinear / bicubic scaling
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,const uint8_t *src, const int16_t *filter,const int32_t *filterPos, int filterSize)
{int i;for (i = 0; i < dstW; i++) {int j;int srcPos = filterPos[i];int val    = 0;for (j = 0; j < filterSize; j++) {val += ((int)src[srcPos + j]) * filter[filterSize * i + j];}dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...}
}

lumConvertRange () [SwsContext -> lumConvertRange()]

SwsContext -> hyScale ()的实现函数是在ff_sws_init_range_convert()中初始化的。可以回顾一下ff_sws_init_range_convert ()的定义,如下所示。

av_cold void ff_sws_init_range_convert(SwsContext *c)
{c->lumConvertRange = NULL;c->chrConvertRange = NULL;if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {if (c->dstBpc <= 14) {if (c->srcRange) {c->lumConvertRange = lumRangeFromJpeg_c;c->chrConvertRange = chrRangeFromJpeg_c;} else {c->lumConvertRange = lumRangeToJpeg_c;c->chrConvertRange = chrRangeToJpeg_c;}} else {if (c->srcRange) {c->lumConvertRange = lumRangeFromJpeg16_c;c->chrConvertRange = chrRangeFromJpeg16_c;} else {c->lumConvertRange = lumRangeToJpeg16_c;c->chrConvertRange = chrRangeToJpeg16_c;}}}
}

SwsContext 的lumConvertRange()函数主要用于JPEG标准像素取值范围(0-255)和MPEG标准像素取值范围(16-235)之间的转换。有关这方面的分析在上一篇文章中一斤详细叙述过,在这里不再重复。简单看一下其中的一个函数。

lumRangeFromJpeg_c()

把亮度从JPEG标准转换为MPEG标准(0-255转换为16-235)的函数lumRangeFromJpeg_c()的定义如下所示。

static void lumRangeFromJpeg_c(int16_t *dst, int width)
{int i;for (i = 0; i < width; i++)dst[i] = (dst[i] * 14071 + 33561947) >> 14;
}

其实这个函数就是做了一个(0-255)到(16-235)的映射。它将亮度值“0”映射成“16”,“255”映射成“235”,因此我们可以代入一个“255”看看转换后的数值是否为“235”。在这里需要注意,dst中存储的像素数值是15bit的亮度值。因此我们需要将8bit的数值“255”左移7位后带入。经过计算,255左移7位后取值为32640,计算后得到的数值为30080,右移7位后得到的8bit亮度值即为235。

hcscale()

水平色度拉伸函数hcscale()的定义位于libswscale\swscale.c,如下所示。

static av_always_inline void hcscale(SwsContext *c, int16_t *dst1,int16_t *dst2, int dstWidth,const uint8_t *src_in[4],int srcW, int xInc,const int16_t *hChrFilter,const int32_t *hChrFilterPos,int hChrFilterSize,uint8_t *formatConvBuffer, uint32_t *pal)
{const uint8_t *src1 = src_in[1], *src2 = src_in[2];if (c->chrToYV12) {uint8_t *buf2 = formatConvBuffer +FFALIGN(srcW*2+78, 16);//转换c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal);src1= formatConvBuffer;src2= buf2;} else if (c->readChrPlanar) {uint8_t *buf2 = formatConvBuffer +FFALIGN(srcW*2+78, 16);//读取c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table);//赋值src1 = formatConvBuffer;src2 = buf2;}if (!c->hcscale_fast) {//色度-水平拉伸c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);} else { // fast bilinear upscale / crap downscalec->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);}//如果需要取值范围的转换(0-255和16-235之间)if (c->chrConvertRange)c->chrConvertRange(dst1, dst2, dstWidth);
}

从hcscale()的源代码可以看出,它的流程如下所示。
1.转换成UV
该功能通过SwsContext的chrToYV12 ()函数完成。如果该函数不存在,则调用SwsContext的readChrPlanar ()读取UV。

2.拉伸
拉伸通过SwsContext的hcScale ()函数完成。如果存在hcscale_fast()方法的话,系统会优先调用hcscale_fast ()。

3.转换范围(如果需要的话)
如果需要转换色度的取值范围(例如色度取值范围从0-255转换为16-240),则会调用SwsContext的chrConvertRange ()函数。

hcscale()的原理和hyScale ()的原理基本上是一样的,在这里既不再详细研究了。

还有几个函数没有分析,但是时间有限,以后有机会再进行补充。

雷霄骅
leixiaohua1020@126.com
http://blog.csdn.net/leixiaohua1020

FFmpeg源代码简单分析:libswscale的sws_scale()相关推荐

  1. FFmpeg源代码简单分析:libswscale的sws_getContext()

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  2. FFmpeg源代码简单分析-其他-libswscale的sws_getContext()

    参考链接 FFmpeg源代码简单分析:libswscale的sws_getContext()_雷霄骅的博客-CSDN博客 libswscale的sws_getContext() FFmpeg中类库li ...

  3. FFmpeg源代码简单分析:libavdevice的gdigrab

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  4. FFmpeg源代码简单分析:libavdevice的avdevice_register_all()

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  5. FFmpeg源代码简单分析:configure

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  6. FFmpeg源代码简单分析:makefile

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  7. FFmpeg源代码简单分析:结构体成员管理系统-AVOption

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  8. FFmpeg源代码简单分析:结构体成员管理系统-AVClass

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  9. FFmpeg源代码简单分析:日志输出系统(av_log()等)

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

最新文章

  1. Windows Phone 7 网络编程之留言板应用
  2. Oracle中的序列 sequence 用法
  3. python实现pdf转excel_python pdf转Excel
  4. android Android项目构建过程
  5. mysql noinstall 安装_mysql-noinstall安装指南
  6. java接口自动化Excel占位符_基于maven+java+TestNG+httpclient+poi+jsonpath+ExtentReport的接口自动化测试框架...
  7. vi 不保存退出_vi或vim的快速操作技巧你知道吗?
  8. Oracle : 使用JDBC连接ORACLE的三种URL格式
  9. solr dih mysql 注意事项
  10. 新手安装Ubuntu操作系统
  11. 关于ajax表单提交.serialize()
  12. 集合的一些练习题1(Collection+Map)
  13. Java 正则表达式匹配规则
  14. 电大网络教育计算机应用基础,(热)最新电大奥鹏远程网络教育计算机应用基础题库.doc...
  15. tf2 --- 结构化数据建模流程
  16. 红米手机连接小米wifi显示已连接服务器,小米手机连wifi已连接却无法访问互联网怎么回事...
  17. 聊斋志异中的《陆判》
  18. Python微信文章 抓取转PDF
  19. 今天不了技术,谈情怀,推荐一篇 寒窑赋
  20. python求奇偶数和_python奇偶数求和

热门文章

  1. 想要批量查询中通快递单号的话,要用什么辅助软件来实现
  2. ECCV 2022 | 面向高光和透明物体感知与抓取的域随机化增强的深度仿真与修复
  3. PLA、ABS、PETG这个三种3D打印材料各有什么优缺点?
  4. 一套键鼠操控多台电脑--Mouse Without Borders 设置教程(转载)
  5. 图片旋转+滚动鼠标中间对图片放大缩小
  6. mysql初级查询小练习
  7. 《忏悔录》法—让雅克.卢梭
  8. ES6之Spread Operater拷贝对象
  9. Sqlserver根据当前时间生成17位时间流水号
  10. 根据时间创建每天重置流水号