人工神经网络分类方法

从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。

目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:(1)BP(Back Propagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且识别精度难以达到要求。

(2)Hopfield神经网络。属于反馈式网络。主要采用Hebb规则进行学习,一般情况下计算的收敛速度较快。

这种网络是美国物理学家J.J.Hopfield于1982年首先提出的,它主要用于模拟生物神经网络的记忆机理。

Hopfield神经网络状态的演变过程是一个非线性动力学系统,可以用一组非线性差分方程来描述。

系统的稳定性可用所谓的“能量函数”进行分析,在满足一定条件下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。

Hopfield网络的演变过程是一种计算联想记忆或求解优化问题的过程。(3)Kohonen网络。

这是一种由芬兰赫尔辛基大学神经网络专家Kohonen(1981)提出的自组织神经网络,其采用了无导师信息的学习算法,这种学习算法仅根据输入数据的属性而调整权值,进而完成向环境学习、自动分类和聚类等任务。

其最大的优点是最终的各个相邻聚类之间是有相似关系的,即使识别时把样本映射到了一个错误的节点,它也倾向于被识别成同一个因素或者一个相近的因素,这就十分接近人的识别特性。

谷歌人工智能写作项目:神经网络伪原创

rbf神经网络算法是什么?

RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换文案狗

RBF神经网络进行数据运算时需要确认聚类中心点的位置及隐层至输出层的权重。通常,选用K-means聚类算法或最小正交二乘法对数据大量的进行训练得出聚类中心矩阵和权重矩阵。

一般情况下,最小正交二乘法聚类中心点的位置是给定的,因此比较适合分布相对规律的数据。而K-means聚类算法则会自主选取聚类中心,进行无监督分类学习,从而完成空间映射关系。

RBF网络特点RBF网络能够逼近任意非线性的函数(因为使用的是一个局部的激活函数。在中心点附近有最大的反应;越接近中心点则反应最大,远离反应成指数递减;就相当于每个神经元都对应不同的感知域)。

可以处理系统内难以解析的规律性,具有很好的泛化能力,并且具有较快的学习速度。

有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢,比如BP网络。

怎么用spss神经网络来分类数据

用spss神经网络分类数据方法如下:神经网络算法能够通过大量的历史数据,逐步建立和完善输入变量到输出结果之间的发展路径,也就是神经网络,在这个神经网络中,每条神经的建立以及神经的粗细(权重)都是经过大量历史数据训练得到的,数据越多,神经网络就越接近真实。

神经网络建立后,就能够通过不同的输入变量值,预测输出结果。例如,银行能够通过历史申请贷款的客户资料,建立一个神经网络模型,用于预测以后申请贷款客户的违约情况,做出是否贷款给该客户的决策。

本篇文章将用一个具体银行案例数据,介绍如何使用SPSS建立神经网络模型,用于判断将来申请贷款者的还款能力。

选取历史数据建立模型,一般会将历史数据分成两大部分:训练集和验证集,很多分析者会直接按照数据顺序将前70%的数据作为训练集,后30%的数据作为验证集。

如果数据之间可以证明是相互独立的,这样的做法没有问题,但是在数据收集的过程中,收集的数据往往不会是完全独立的(变量之间的相关关系可能没有被分析者发现)。

因此,通常的做法是用随机数发生器来将历史数据随机分成两部分,这样就能够尽量避免相同属性的数据被归类到一个数据集当中,使得建立的模型效果能够更加优秀。

在具体介绍如何使用SPSS软件建立神经网络模型的案例之前,先介绍SPSS的另外一个功能:随机数发生器。SPSS的随机数发生器常数的随机数据不是真正的随机数,而是伪随机数。

伪随机数是由算法计算得出的,因此是可以预测的。当随机种子(算法参数)相同时,对于同一个随机函数,得出的随机数集合是完全相同的。与伪随机数对应的是真随机数,它是真正的随机数,无法预测也没有周期性。

目前大部分芯片厂商都集成了硬件随机数发生器,例如有一种热噪声随机数发生器,它的原理是利用由导体中电子的热震动引起的热噪声信号,作为随机数种子。

神经网络算法是什么?

Introduction --------------------------------------------------------------------------------神经网络是新技术领域中的一个时尚词汇。

很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。

“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。

一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。

在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。

The neuron --------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。

基本神经元包含有synapses、soma、axon及dendrites。

Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。

然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。

最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。如同生物学上的基本神经元,人工的神经网络也有基本的神经元。

每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。

然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。

相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。

Learning --------------------------------------------------------------------------------正如上述所写,问题的核心是权重及临界值是该如何设定的呢?

世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。

由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。

然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。

非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。

Architecture --------------------------------------------------------------------------------在神经网络中,遵守明确的规则一词是最“模糊不清”的。

因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)!

而这些,都遵守一个网络体系结构的标准。一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。

这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。

对于不同神经网络的更多详细资料可以看Generation5 essays尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。

The Function of ANNs --------------------------------------------------------------------------------神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。

分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。

更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。联想模式接受一组数而输出另一组。

例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。

The Ups and Downs of Neural Networks --------------------------------------------------------------------------------神经网络在这个领域中有很多优点,使得它越来越流行。

它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。

神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。

神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。

神经网络的另一个问题是对某一个问题构建网络所定义的条件不足 - 有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。

因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。

NN 神经网络,Neural Network ANNs 人工神经网络,Artificial Neural Networks neurons 神经元 synapses 神经键 self-organizing networks 自我调整网络 networks modelling thermodynamic properties 热动态性网络模型 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++网格算法我没听说过好像只有网格计算这个词网格计算是伴随着互联网技术而迅速发展起来的,专门针对复杂科学计算的新型计算模式。

这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算是由成千上万个“节点”组成的“一张网格”, 所以这种计算方式叫网格计算。

这样组织起来的“虚拟的超级计算机”有两个优势,一个是数据处理能力超强;另一个是能充分利用网上的闲置处理能力。

简单地讲,网格是把整个网络整合成一台巨大的超级计算机,实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

关于BP神经网络算法分类的问题 5

神经网络算法的局限性

神经网络算法的局限性是:可以使用均值函数但是这个函数将获取嵌入的平均值,并将其分配为新的嵌入。但是,很容易看出,对于某些不同的图,它们会给出相同的嵌入,所以,均值函数并不是单射的。

即使图不同,节点 v 和 v’ 的平均嵌入聚合(此处嵌入对应于不同的颜色)将给出相同的嵌入。

这里真正重要的是,你可以先用某个函数 f(x) 将每个嵌入映射到一个新的嵌入,然后进行求和,得到一个单射函数。

在证明中,它们实际上显式地声明了这个函数 f,这需要两个额外条件,即 X 是可数的,且任何多重集都是有界的。

并且事实上,在训练中并没有任何东西可以保证这种单射性,而且可能还会有一些图是 GIN 无法区分的,但WL可以。所以这是对 GIN 的一个很强的假设,如果违反了这一假设,那么 GIN 的性能将受到限制。

神经网络算法的普适性是:研究模型的局限性通常更容易获得对模型的洞察。毕竟,网络所不能学到的关于特定特征的知识在应用时独立于训练过程。

此外,通过帮助我们理解与模型相关的任务的难度,不可能性结果(impossibility result)有助于得出关于如何选择模型超参数的实用建议。以图分类问题为例。

训练一个图分类器需要识别是什么构成了一个类,即在同一个类而非其他类中找到图共享的属性,然后决定新的图是否遵守所学习到的属性。

然而,如果可以通过一定深度的图神经网络(且测试集足够多样化)证明上述决策问题是不可能的,那么我们可以确定,同一个网络将不会学习如何正确地对测试集进行分类,这与使用了什么学习算法无关。

因此,在进行实验时,我们应该把重点放在比下限更深的网络上。

BP人工神经网络方法

(一)方法原理人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。

人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。

神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。

常见的激活函数为Sigmoid型。

人工神经元的输入与输出的关系为地球物理勘探概论式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。

常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。

正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。

此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量 。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。

在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。

(二)BP神经网络计算步骤(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。(2)输入一个样本X。

(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。

其中输入层的输出等于输入样本值,隐含层和输出层的输入为地球物理勘探概论输出为地球物理勘探概论式中:f为阈值逻辑函数,一般取Sigmoid函数,即地球物理勘探概论式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。

较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。

(4)计算实际输出与理想输出的误差地球物理勘探概论式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。

(5)误差反向传播,修改权值地球物理勘探概论式中:地球物理勘探概论地球物理勘探概论(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。

(三)塔北雅克拉地区BP神经网络预测实例以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射 构造面等7个特征为识别的依据。

构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。

在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。

在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。S4井位于测区西南部5线25点,是区内唯一已知井。

该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。

取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。

BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。

图6-2-4 塔北雅克拉地区BP神经网络聚类结果(据刘天佑等,1997)由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。

神经网络分类算法是什么,神经网络分类算法简介相关推荐

  1. 基于灰狼算法优化概率神经网络PNN的分类预测-附代码

    基于灰狼算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于灰狼算法优化概率神经网络PNN的分类预测 - 附代码 1.PNN网络概述 2.变压器故障诊街系统相关背景 2.1 模型建立 3. ...

  2. Python实现GWO智能灰狼优化算法优化卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取. 1.项目背景 灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjal ...

  3. 【BP分类】基于鸟群算法优化BP神经网络实现数据分类附matlab代码

    1 简介 ​BSA 算法优化 BP 神经网络的基本思想是: 利 用 BSA 算法的全局搜索能力, 优化 BP 神经网络初始的权值和阈值, 也就是决策变量, 其中每一组决策变量均包含在鸟群个体所处的空间 ...

  4. PyTorch基础与简单应用:构建卷积神经网络实现MNIST手写数字分类

    文章目录 (一) 问题描述 (二) 设计简要描述 (三) 程序清单 (四) 结果分析 (五) 调试报告 (六) 实验小结 (七) 参考资料 (一) 问题描述 构建卷积神经网络实现MNIST手写数字分类 ...

  5. DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界

    DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 目录 输出结果 设计代码 输出结果 设计代码 首先查看数据集 import numpy as np from ...

  6. 从文本分类来看图卷积神经网络

        " 图神经网络火了这么久,是时候掌握它了." 本文包括以下内容,阅读时间10min 图神经网络是什么意思 文本如何构建图 图卷积神经网络 源代码实现 图卷积神经网络最新进展 ...

  7. svm算法原理_机器学习——分类算法(1)

    一. K近邻 KNN算法的基本思想就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是 ...

  8. 适用于特殊类型自然语言分类的自适应特征谱神经网络

    点击上方蓝字关注我们 适用于特殊类型自然语言分类的自适应特征谱神经网络 王一峰, 孙丽茹, 崔良乐, 赵毅 哈尔滨工业大学(深圳)理学院,广东 深圳 518055    摘要:计算机算力的提升使得深度 ...

  9. 题外:分类篇(音乐风格分类)基于BP神经网络

    语音特征参数MFCC的提取及识别 (2012-09-07 20:24:03) 转载▼ 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性 ...

最新文章

  1. 武汉第二中学2021年高考成绩查询,武汉中学排名前十名,2021年武汉中学排名一览表...
  2. Matlab基本函数-hidden函数,matlab中hidden off有什么用?
  3. Fiddler使用方法简介
  4. Linux下安装LoadRunner LoadGenerator
  5. 如何在macOS中查找和删除潜在的驱动程序冲突?
  6. jquery之父john resig见面会及jquery最新动态
  7. 使用Notepad3替代Notepad++
  8. 解决python安装包无法正常安装问题
  9. 台式计算机卡拉ok点歌系统,如何用现有的台式电脑改造歌厅点歌系统
  10. FairScheduler源码计算fair share
  11. mtk系统如何制作差分包且正确签名?
  12. cps linux命令,Linux基本网络及文件传输命令
  13. 计算机基础知识还有那些,关于电脑基础知识有哪些
  14. 《Docker从入门到实践》
  15. GitHub 代码一键转 VS Code,太好用了!
  16. 肝肠轴——看不见的Crosstalk
  17. 43、总建筑面积大于20000㎡的地下或半地下建筑的防火要求
  18. (九)数字后端之静态时序分析STA
  19. “M OP N“ 数值问题
  20. 小游戏制作QQ宠物系列1 ---- 吹泡泡

热门文章

  1. ZCU102开发板的时钟系统
  2. 如何在linux中备份文件
  3. 程序员公众号编辑工具
  4. 优雅简洁的通用排版利器:MarkDown(支持公众号、知乎等场景渲染)
  5. 【DeeplabV3+ get_miou_png】DeeplabV3+获取数据集预测结果灰度图
  6. 分割评价指标MIOU
  7. 《强化学习周刊》第17期:ICLR-2021强化学习的最新研究与应用
  8. 关于手机店、电脑城,存在的物联卡的情况说明
  9. [JavaScript]只需一行代码,轻松搞定快捷留言-V2升级版javascript
  10. ASP.NET图书管理系统简单实现步骤