前言

设计一个缓存系统,不得不考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应。

缓存穿透

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。

解决方案

有很多种方法可以有效地解决缓存穿透问题,最常见的是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。

缓存雪崩

缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重导致雪崩。

解决方案

缓存失效时的雪崩效应对底层系统的冲击非常可怕。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。这里分享一个简单方案,就是将缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

缓存击穿

对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。

缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。

解决方案

我们的目标是:尽量少的线程构建缓存(甚至是一个) + 数据一致性 + 较少的潜在危险,下面会介绍四种方法来解决这个问题:

1、使用互斥锁(mutex key):

这种解决方案思路比较简单,就是只让一个线程构建缓存,其他线程等待构建缓存的线程执行完,重新从缓存获取数据就可以了(如下图)

如果是单机,可以用synchronized或者lock来处理,如果是分布式环境可以用分布式锁就可以了(分布式锁,可以用memcache的add, redis的setnx, zookeeper的添加节点操作)。

下面是Tim yang博客的代码,是memcache的伪代码实现

if (memcache.get(key) == null) {  // 3 min timeout to avoid mutex holder crash  if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {  value = db.get(key);  memcache.set(key, value);  memcache.delete(key_mutex);  } else {  sleep(50);  retry();  }  } 

如果换成redis,就是:

String get(String key) {  String value = redis.get(key);  if (value  == null) {  if (redis.setnx(key_mutex, "1")) {  // 3 min timeout to avoid mutex holder crash  redis.expire(key_mutex, 3 * 60)  value = db.get(key);  redis.set(key, value);  redis.delete(key_mutex);  } else {  //其他线程休息50毫秒后重试  Thread.sleep(50);  get(key);  }  }  }  

2、"提前"使用互斥锁(mutex key)

在value内部设置1个超时值(timeout1), timeout1比实际的memcache timeout(timeout2)小。当从cache读取到timeout1发现它已经过期时候,马上延长timeout1并重新设置到cache。然后再从数据库加载数据并设置到cache中。伪代码如下:

v = memcache.get(key);
if (v == null) {  if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {  value = db.get(key);  memcache.set(key, value);  memcache.delete(key_mutex);  } else {  sleep(50);  retry();  }
} else {  if (v.timeout <= now()) {  if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {  // extend the timeout for other threads  v.timeout += 3 * 60 * 1000;  memcache.set(key, v, KEY_TIMEOUT * 2);  // load the latest value from db  v = db.get(key);  v.timeout = KEY_TIMEOUT;  memcache.set(key, value, KEY_TIMEOUT * 2);  memcache.delete(key_mutex);  } else {  sleep(50);  retry();  }  }  }  

3、"永远不过期"

这里的“永远不过期”包含两层意思:

1、从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。

2、从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期

从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。

String get(final String key) {  V v = redis.get(key);  String value = v.getValue();  long timeout = v.getTimeout();  if (v.timeout <= System.currentTimeMillis()) {  // 异步更新后台异常执行  threadPool.execute(new Runnable() {  public void run() {  String keyMutex = "mutex:" + key;  if (redis.setnx(keyMutex, "1")) {  // 3 min timeout to avoid mutex holder crash  redis.expire(keyMutex, 3 * 60);  String dbValue = db.get(key);  redis.set(key, dbValue);  redis.delete(keyMutex);  }  }  });  }  return value;  }  

4、资源保护

之前在缓存雪崩那篇文章提到了netflix的hystrix,可以做资源的隔离保护主线程池,如果把这个应用到缓存的构建也未尝不可。

三、四种方案对比:

作为一个并发量较大的互联网应用,我们的目标有3个: 1、加快用户访问速度,提高用户体验。 2、降低后端负载,保证系统平稳。 3、保证数据“尽可能”及时更新(要不要完全一致,取决于业务,而不是技术。)

所以第二节中提到的四种方法,可以做如下比较,还是那就话:没有最好,只有最合适。

解决方案

一、简单分布式锁(Tim yang)

优点

1、思路简单

2、保证一致性

缺点

1、代码复杂度增大

2、存在死锁的风险

3、存在线程池阻塞的风险

二、加另外一个过期时间(Tim yang)

优点

1、保证一致性

缺点

1、代码复杂度增大

2、存在死锁的风险

3、存在线程池阻塞的风险

三、不过期(本文)

优点

1、异步构建缓存,不会阻塞线程池

缺点

1、不保证一致性。

2、代码复杂度增大(每个value都要维护一个timekey)。

3、占用一定的内存空间(每个value都要维护一个timekey)。

四、不过期(本文)

优点

1、hystrix技术成熟,有效保证后端。

2、hystrix监控强大。

缺点

1、部分访问存在降级策略。

总结

热点key + 过期时间 + 复杂的构建缓存过程 => mutex key问题 构建缓存一个线程做就可以了。 四种解决方案:没有最佳只有最合适。

出处:https://dwz.cn/E17vTJXl

面试必备:缓存穿透,缓存雪崩的四种解决方案相关推荐

  1. 什么是缓存穿透、雪崩、击穿以及解决方案

    目录 1.缓存穿透 2.缓存雪崩 3.缓存击穿 4.区别总结 5.加锁实现 1.缓存穿透 描述: 在查询一个数据时,在缓存中不存在,将去数据库进行查询并且数据库中也不存在数据,使得缓存中一直不会存在数 ...

  2. beyond compare4过期解决方法_面试必备:缓存穿透、雪崩解决方案及缓存击穿的四种解决方案...

    前言 设计一个缓存系统,不得不要考虑的问题就是:缓存穿透.缓存击穿与失效时的雪崩效应. 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到 ...

  3. redis热点key解决方案_缓存穿透,缓存雪崩,4种解决方案分析

    前言 设计一个缓存系统,不得不要考虑的问题就是:缓存穿透.缓存击穿与失效时的雪崩效应. 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到 ...

  4. Redis 缓存穿透、雪崩、缓存数据库不一致、持久化方式、分布式锁、过期策略

    1. Redis 缓存穿透 1.1 Redis 缓存穿透概念 访问了不存在的 key,缓存未命中,请求会穿透到 DB,量大时可能会对 DB 造成压力导致服务异常. 由于不恰当的业务功能实现,或者外部恶 ...

  5. redis缓存穿透,缓存击穿,缓存雪崩

    缓存穿透 缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有.这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询).这样请求就会绕过 ...

  6. 二十七、Redis缓存穿透和雪崩(完)

    Redis缓存穿透和雪崩 一.服务的高可用问题 在这里我们不会详细的区分析解决方案的底层! Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面.但同时,它也带来了一些问题.其中 ...

  7. Redis中的缓存穿透、雪崩、击穿的原因以及解决方案(详解)

    一.概述 ① 缓存穿透:大量请求根本不存在的key(下文详解) ② 缓存雪崩:redis中大量key集体过期(下文详解) ③ 缓存击穿:redis中一个热点key过期(大量用户访问该热点key,但是热 ...

  8. Redis11_缓存穿透和雪崩

    Redis11_缓存穿透和雪崩 缓存穿透 用户查询某个数据时,会先在redis缓存中查询,如果缓存没有命中,会去持久层数据库MySQL中查询,如果此时依然没有命中,将返回null,不会写入缓存. 当同 ...

  9. Redis -- 缓存穿透和雪崩

    文章目录 一.缓存穿透 1.1 概念 1.2 解决方案 1.3 布隆过滤器的工作原理 二.缓存击穿 2.1 概念 2.2 解决方案 三.缓存雪崩 3.1 概念 3.2 解决方案 用户的数据一般是存储于 ...

最新文章

  1. Java 方法重载 方法重写
  2. Python学习(二)语言基础
  3. SharePoint2007安装图文详解二:安装AD(活动目录)及DNS
  4. 深度linux运行卡顿,Deepin很卡怎么办?Deepin卡顿解决方法盘点
  5. Lync Server 2013企业版部署系列之三:CA准备
  6. 95-10-132-启动-TransactionCoordinator-源码
  7. 年度回忆录(2011.07----2011.12)
  8. Blocks in Objective-C
  9. Spring.NET学习笔记16——事务管理(应用篇) Level 200
  10. 团队的远程管理_管理远程团队的4种方法
  11. PMP到底有没有什么用?同学有话说
  12. 知识图谱技术分享会----有关知识图谱构建的部分关键技术简介及思考
  13. python基础教程视频优酷_Python快速入门视频
  14. 03JavaScript基础——数组、二维数组、数组方法
  15. 整理软件行业职位介绍(PM,RD,FE,UE,UI,QA,OP,DBA,BRD,MRD, PRD,FSD等)、组织结构、职责
  16. ctf show-web入门 php特性篇部分题解
  17. listview 的首行固定内容标题且加粗显示(类似于表格的首行)的实现方法
  18. Python计算机视觉编程(二)---SIFT、Harris特征
  19. 以下不属于C语言字符集的为,c语言第1章练习题答案
  20. 京东2016面经(算法春招实习)

热门文章

  1. 飞在空中的仓库再配合无人机送货,沃尔玛新专利厉害了
  2. 选择列表中的列……无效,因为该列没有包含在聚合函数或 GROUP BY 子句中
  3. javascript中的console.log有什么作用?
  4. mysql 获取当前日期及格式化
  5. non-aggregates(非聚合)对象不能使用初始化列表
  6. Yesterday、Today、Tomorrow - 昨天、今天、明天
  7. Ubuntu 相关命令行工具
  8. Python 学习笔记(半ZZ半自己写)
  9. OSPF的LSA类型 ——连载一路由器LSA
  10. 笔记1——C++多态与Java多态的异同