在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西。

以下是本文目录大纲:

一.synchronized的缺陷

二.java.util.concurrent.locks包下常用的类

三.锁的相关概念介绍

若有不正之处请多多谅解,并欢迎批评指正。

一.synchronized的缺陷

synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

2)线程执行发生异常,此时JVM会让线程自动释放锁。

那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

二.java.util.concurrent.locks包下常用的类

下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

1.Lock

首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

public interface Lock {

void lock();

void lockInterruptibly() throws InterruptedException;

boolean tryLock();

boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

void unlock();

Condition newCondition();

}

下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

Lock lock = ...;

lock.lock();

try{

//处理任务

}catch(Exception ex){

}finally{

lock.unlock();   //释放锁

}

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

所以,一般情况下通过tryLock来获取锁时是这样使用的:

Lock lock = ...;

if(lock.tryLock()) {

try{

//处理任务

}catch(Exception ex){

}finally{

lock.unlock();   //释放锁

}

}else {

//如果不能获取锁,则直接做其他事情

}

lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

因此lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {

lock.lockInterruptibly();

try {

//.....

}

finally {

lock.unlock();

}

}

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

2.ReentrantLock

ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

例子1,lock()的正确使用方法

public class Test {

private ArrayList<Integer> arrayList = new ArrayList<Integer>();

public static void main(String[] args)  {

final Test test = new Test();

new Thread(){

public void run() {

test.insert(Thread.currentThread());

};

}.start();

new Thread(){

public void run() {

test.insert(Thread.currentThread());

};

}.start();

}

public void insert(Thread thread) {

Lock lock = new ReentrantLock();    //注意这个地方

lock.lock();

try {

System.out.println(thread.getName()+"得到了锁");

for(int i=0;i<5;i++) {

arrayList.add(i);

}

} catch (Exception e) {

// TODO: handle exception

}finally {

System.out.println(thread.getName()+"释放了锁");

lock.unlock();

}

}

}

各位朋友先想一下这段代码的输出结果是什么?

Thread-0得到了锁

Thread-1得到了锁

Thread-0释放了锁

Thread-1释放了锁

也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

public class Test {

private ArrayList<Integer> arrayList = new ArrayList<Integer>();

private Lock lock = new ReentrantLock();    //注意这个地方

public static void main(String[] args)  {

final Test test = new Test();

new Thread(){

public void run() {

test.insert(Thread.currentThread());

};

}.start();

new Thread(){

public void run() {

test.insert(Thread.currentThread());

};

}.start();

}

public void insert(Thread thread) {

lock.lock();

try {

System.out.println(thread.getName()+"得到了锁");

for(int i=0;i<5;i++) {

arrayList.add(i);

}

} catch (Exception e) {

// TODO: handle exception

}finally {

System.out.println(thread.getName()+"释放了锁");

lock.unlock();

}

}

}

这样就是正确地使用Lock的方法了。

例子2,tryLock()的使用方法

public class Test {

private ArrayList<Integer> arrayList = new ArrayList<Integer>();

private Lock lock = new ReentrantLock();    //注意这个地方

public static void main(String[] args)  {

final Test test = new Test();

new Thread(){

public void run() {

test.insert(Thread.currentThread());

};

}.start();

new Thread(){

public void run() {

test.insert(Thread.currentThread());

};

}.start();

}

public void insert(Thread thread) {

if(lock.tryLock()) {

try {

System.out.println(thread.getName()+"得到了锁");

for(int i=0;i<5;i++) {

arrayList.add(i);

}

} catch (Exception e) {

// TODO: handle exception

}finally {

System.out.println(thread.getName()+"释放了锁");

lock.unlock();

}

} else {

System.out.println(thread.getName()+"获取锁失败");

}

}

}

输出结果:

Thread-0得到了锁

Thread-1获取锁失败

Thread-0释放了锁

例子3,lockInterruptibly()响应中断的使用方法:

public class Test {

private Lock lock = new ReentrantLock();

public static void main(String[] args)  {

Test test = new Test();

MyThread thread1 = new MyThread(test);

MyThread thread2 = new MyThread(test);

thread1.start();

thread2.start();

try {

Thread.sleep(2000);

} catch (InterruptedException e) {

e.printStackTrace();

}

thread2.interrupt();

}

public void insert(Thread thread) throws InterruptedException{

lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出

try {

System.out.println(thread.getName()+"得到了锁");

long startTime = System.currentTimeMillis();

for(    ;     ;) {

if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)

break;

//插入数据

}

}

finally {

System.out.println(Thread.currentThread().getName()+"执行finally");

lock.unlock();

System.out.println(thread.getName()+"释放了锁");

}

}

}

class MyThread extends Thread {

private Test test = null;

public MyThread(Test test) {

this.test = test;

}

@Override

public void run() {

try {

test.insert(Thread.currentThread());

} catch (InterruptedException e) {

System.out.println(Thread.currentThread().getName()+"被中断");

}

}

}

运行之后,发现thread2能够被正确中断。

3.ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法:

public interface ReadWriteLock {

/**

* Returns the lock used for reading.

*

* @return the lock used for reading.

*/

Lock readLock();

/**

* Returns the lock used for writing.

*

* @return the lock used for writing.

*/

Lock writeLock();

}

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

4.ReentrantReadWriteLock

ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

public class Test {

private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

public static void main(String[] args)  {

final Test test = new Test();

new Thread(){

public void run() {

test.get(Thread.currentThread());

};

}.start();

new Thread(){

public void run() {

test.get(Thread.currentThread());

};

}.start();

}

public synchronized void get(Thread thread) {

long start = System.currentTimeMillis();

while(System.currentTimeMillis() - start <= 1) {

System.out.println(thread.getName()+"正在进行读操作");

}

System.out.println(thread.getName()+"读操作完毕");

}

}

这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0读操作完毕

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1读操作完毕

而改成用读写锁的话:

public class Test {

private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

public static void main(String[] args)  {

final Test test = new Test();

new Thread(){

public void run() {

test.get(Thread.currentThread());

};

}.start();

new Thread(){

public void run() {

test.get(Thread.currentThread());

};

}.start();

}

public void get(Thread thread) {

rwl.readLock().lock();

try {

long start = System.currentTimeMillis();

while(System.currentTimeMillis() - start <= 1) {

System.out.println(thread.getName()+"正在进行读操作");

}

System.out.println(thread.getName()+"读操作完毕");

} finally {

rwl.readLock().unlock();

}

}

}

此时打印的结果为:

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0正在进行读操作

Thread-1正在进行读操作

Thread-0读操作完毕

Thread-1读操作完毕

说明thread1和thread2在同时进行读操作。

这样就大大提升了读操作的效率。

不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。

5.Lock和synchronized的选择

总结来说,Lock和synchronized有以下几点不同:

1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

5)Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

Java并发编程:Lock(上)相关推荐

  1. 【基础】Java 并发编程(上)

    Java 并发编程(上) JUC 概述 什么是 JUC? 线程与进程 并发与并行 线程基础概述 线程的状态 线程的活性故障 死锁的必要条件 避免死锁的方法 线程锁死的分类 公平调度与非公平调度 多线程 ...

  2. java并发编程:lock_编程的第五个十年:J代表Java

    java并发编程:lock 一段非常个人的编程历史中的第五章第一部分 在自己的一类 尽管Microsoft并不认同Oracle对Java的所有雄心壮志,但我们同意它对于软件开发人员来说是非常有价值的工 ...

  3. java并发编程实战(二)

    java并发编程中常常会用到两种容器来存放一些数据,这些数据需要保证能在多线程下正常访问.常见的容器分为两类:同步容器和并发容器.在java并发编程实战一书中的第五章也有讲解. 什么是同步容器以及优劣 ...

  4. Java并发编程(06):Lock机制下API用法详解

    本文源码:GitHub·点这里 || GitEE·点这里 一.Lock体系结构 1.基础接口简介 Lock加锁相关结构中涉及两个使用广泛的基础API:ReentrantLock类和Condition接 ...

  5. JUC里面的相关分类|| java并发编程中,关于锁的实现方式有两种synchronized ,Lock || Lock——ReentrantLock||AQS(抽象队列同步器)

    JUC分类 java并发编程中,关于锁的实现方式有两种synchronized ,Lock AQS--AbstractQueuedSynchronizer

  6. 6. Java并发编程-并发包-Lock和Condition

    前文介绍了java语言本身通过synchronized, wait, notify实现了管程,解决了并发编程两大难题:互斥和同步. 这两大问题并发包中也得到了相应的实现,分别时Lock和Conditi ...

  7. Java并发编程71道面试题及答案

    Java并发编程71道面试题及答案 1.在java中守护线程和本地线程区别? java中的线程分为两种:守护线程(Daemon)和用户线程(User). 任何线程都可以设置为守护线程和用户线程,通过方 ...

  8. 基于JVM原理、JMM模型和CPU缓存模型深入理解Java并发编程

    许多以Java多线程开发为主题的技术书籍,都会把对Java虚拟机和Java内存模型的讲解,作为讲授Java并发编程开发的主要内容,有的还深入到计算机系统的内存.CPU.缓存等予以说明.实际上,在实际的 ...

  9. Java并发编程,无锁CAS与Unsafe类及其并发包Atomic

    为什么80%的码农都做不了架构师?>>>    我们曾经详谈过有锁并发的典型代表synchronized关键字,通过该关键字可以控制并发执行过程中有且只有一个线程可以访问共享资源,其 ...

  10. Java并发编程之介绍

    并发编程简介 将串行执行部分编程并发执行,但要考虑上下文切换和资源调度的时间 并发编程的意义及影响多线程的因素 并发编程的目的是为了让程序运行得更快,但是,并不是启动更多的线程就能让程序最 大限度地并 ...

最新文章

  1. 指定模块打包命令_大前端进阶之Babel、模块化、webpack
  2. 基于FPGA的异构计算在多媒体中的应用
  3. Django新建项目
  4. iOS开发之Runtime关联属性
  5. 蓝桥杯 2011年第二届C语言初赛试题(2)
  6. 在csdn中输入公式的方法
  7. 【Ian Goodfellow 强推】GAN 进展跟踪 10 大论文(附下载)
  8. c# winform 设置winform进入窗口后在文本框里的默认焦点
  9. LwIP协议栈之ARP(Address Resolution Protocal)协议详解
  10. 01使用ILDasm.exe将可执行文件反编译成IL代码
  11. 什么是BI工具,好用的BI工具软件排名
  12. 命令提示符(文件操作基础)
  13. 《从Paxos到Zookeeper分布式一致性原理与实践》读书笔记
  14. 2018.11.22!今天重温一遍知识点,捋一捋思路
  15. http://nianjian.xiaze.com/tags.php?/%E4%B8%AD%E5%9B%BD%E7%B2%89%E4%BD%93%E5%B7%A5%E4%B8%9A%E5%B9%B4%
  16. 从删库到跑路,论运维的自我修养
  17. 朴素贝叶斯情感分析评分python_朴素贝叶斯算法下的情感分析——C#编程实现
  18. 音视频入门H264AAC
  19. linux ps2键盘不能用,解决usb鼠标与ps2键盘合用时开机键盘失效
  20. uniapp实现瀑布流懒加载实现和无限上拉加载更多

热门文章

  1. Android中实现Activity的透明背景效果
  2. 信步漫谈之JDK—源码编译
  3. 1023. Have Fun with Numbers (20)
  4. python 根据字符串语句进行操作再造函数(evec和eval方法)
  5. IT部门域事件与业务分析
  6. vc2010, fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt解决办法
  7. 怎么把jdk和jRE的Javadoc文档整合到MyEclipse
  8. 软件自动化测试学习步骤
  9. (转)Google Fonts 的介绍与使用
  10. MyBatis简单了解