近日遇到一个线上服务 socket 资源被不断打满的情况。通过各种工具分析线上问题,定位到问题代码。这里对该问题发现、修复过程进行一下复盘总结。

先看两张图。一张图是服务正常时监控到的 socket 状态,另一张当然就是异常啦!

图一:正常时监控

图二:异常时监控

从图中的表现情况来看,就是从 04:00 开始,socket 资源不断上涨,每个谷底时重启后恢复到正常值,然后继续不断上涨不释放,而且每次达到峰值的间隔时间越来越短。

重启后,排查了日志,没有看到 panic ,此时也就没有进一步检查,真的以为重启大法好。

情况说明

该服务使用Golang开发,已经上线正常运行将近一年,提供给其它服务调用,主要底层资源有DB/Redis/MQ。

为了后续说明的方便,将服务的架构图进行一下说明。

图三:服务架构

架构是非常简单。

问题出现在早上 08:20 左右开始的,报警收到该服务出现 504,此时第一反应是该服务长时间没有重启(快两个月了),可能存在一些内存泄漏,没有多想直接进行了重启。也就是在图二第一个谷底的时候,经过重启服务恢复到正常水平(重启真好用,开心)。

将近 14:00 的时候,再次被告警出现了 504 ,当时心中略感不对劲,但由于当天恰好有一场大型促销活动,因此先立马再次重启服务。直到后续大概过了1小时后又开始告警,连续几次重启后,发现需要重启的时间间隔越来越短。此时发现问题绝不简单。这一次重启真的解决不了问题老,因此立马申请机器权限、开始排查问题。下面的截图全部来源我的重现demo,与线上无关。

发现问题

出现问题后,首先要进行分析推断、然后验证、最后定位修改。根据当时的表现是分别进行了以下猜想。

ps:后续截图全部来源自己本地复现时的截图

推断一

socket 资源被不断打满,并且之前从未出现过,今日突然出现,怀疑是不是请求量太大压垮服务

经过查看实时 qps 后,放弃该想法,虽然量有增加,但依然在服务器承受范围(远远未达到压测的基准值)。

推断二

两台机器故障是同时发生,重启一台,另外一台也会得到缓解,作为独立部署在两个集群的服务非常诡异

有了上面的的依据,推出的结果是肯定是该服务依赖的底层资源除了问题,要不然不可能独立集群的服务同时出问题。

由于监控显示是 socket 问题,因此通过 netstat 命令查看了当前tcp链接的情况(本地测试,线上实际值大的多)

/go/src/hello # netstat -na | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

LISTEN 2

CLOSE_WAIT 23 # 非常异常

TIME_WAIT 1

发现绝大部份的链接处于 CLOSE_WAIT 状态,这是非常不可思议情况。然后用 netstat -an 命令进行了检查。

图四:大量的CLOSE_WAIT

CLOSED 表示socket连接没被使用。 LISTENING 表示正在监听进入的连接。 SYN_SENT 表示正在试着建立连接。 SYN_RECEIVED 进行连接初始同步。 ESTABLISHED 表示连接已被建立。 CLOSE_WAIT 表示远程计算器关闭连接,正在等待socket连接的关闭。 FIN_WAIT_1 表示socket连接关闭,正在关闭连接。 CLOSING 先关闭本地socket连接,然后关闭远程socket连接,最后等待确认信息。 LAST_ACK 远程计算器关闭后,等待确认信号。 FIN_WAIT_2 socket连接关闭后,等待来自远程计算器的关闭信号。 TIME_WAIT 连接关闭后,等待远程计算器关闭重发。

然后开始重点思考为什么会出现大量的mysql连接是 CLOSE_WAIT 呢?为了说清楚,我们来插播一点TCP的四次挥手知识。

TCP四次挥手

我们来看看 TCP 的四次挥手是怎么样的流程:

图五:TCP四次挥手

用中文来描述下这个过程:

Client: 服务端大哥,我事情都干完了,准备撤了,这里对应的就是客户端发了一个FIN

Server:知道了,但是你等等我,我还要收收尾,这里对应的就是服务端收到 FIN 后回应的 ACK

经过上面两步之后,服务端就会处于 CLOSE_WAIT 状态。过了一段时间 Server 收尾完了

Server:小弟,哥哥我做完了,撤吧,服务端发送了FIN

Client:大哥,再见啊,这里是客户端对服务端的一个 ACK

到此服务端就可以跑路了,但是客户端还不行。为什么呢?客户端还必须等待 2MSL 个时间,这里为什么客户端还不能直接跑路呢?主要是为了防止发送出去的 ACK 服务端没有收到,服务端重发 FIN 再次来询问,如果客户端发完就跑路了,那么服务端重发的时候就没人理他了。这个等待的时间长度也很讲究。

Maximum Segment Lifetime 报文最大生存时间,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃

这里一定不要被图里的 client/server 和项目里的客户端服务器端混淆,你只要记住:主动关闭的一方发出 FIN 包(Client),被动关闭(Server)的一方响应 ACK 包,此时,被动关闭的一方就进入了 CLOSE_WAIT 状态。如果一切正常,稍后被动关闭的一方也会发出 FIN 包,然后迁移到 LAST_ACK 状态。

既然是这样, TCP 抓包分析下:

/go # tcpdump -n port 3306

# 发生了 3次握手

11:38:15.679863 IP 172.18.0.5.38822 > 172.18.0.3.3306: Flags [S], seq 4065722321, win 29200, options [mss 1460,sackOK,TS val 2997352 ecr 0,nop,wscale 7], length 0

11:38:15.679923 IP 172.18.0.3.3306 > 172.18.0.5.38822: Flags [S.], seq 780487619, ack 4065722322, win 28960, options [mss 1460,sackOK,TS val 2997352 ecr 2997352,nop,wscale 7], length 0

11:38:15.679936 IP 172.18.0.5.38822 > 172.18.0.3.3306: Flags [.], ack 1, win 229, options [nop,nop,TS val 2997352 ecr 2997352], length 0

# mysql 主动断开链接

11:38:45.693382 IP 172.18.0.3.3306 > 172.18.0.5.38822: Flags [F.], seq 123, ack 144, win 227, options [nop,nop,TS val 3000355 ecr 2997359], length 0 # MySQL负载均衡器发送fin包给我

11:38:45.740958 IP 172.18.0.5.38822 > 172.18.0.3.3306: Flags [.], ack 124, win 229, options [nop,nop,TS val 3000360 ecr 3000355], length 0 # 我回复ack给它

... ... # 本来还需要我发送fin给他,但是我没有发,所以出现了close_wait。那这是什么缘故呢?

src > dst: flags data-seqno ack window urgent options src > dst 表明从源地址到目的地址flags 是TCP包中的标志信息,S 是SYN标志, F(FIN), P(PUSH) , R(RST) "."(没有标记)data-seqno 是数据包中的数据的顺序号ack 是下次期望的顺序号window 是接收缓存的窗口大小urgent 表明数据包中是否有紧急指针options 是选项

结合上面的信息,我用文字说明下:MySQL负载均衡器 给我的服务发送 FIN 包,我进行了响应,此时我进入了 CLOSE_WAIR 状态,但是后续作为被动关闭方的我,并没有发送 FIN,导致我服务端一直处于 CLOSE_WAIR 状态,无法最终进入 CLOSED 状态。

那么我推断出现这种情况可能的原因有以下几种:

负载均衡器 异常退出了, 这基本是不可能的,他出现问题绝对是大面积的服务报警,而不仅仅是我一个服务

MySQL负载均衡器 的超时设置的太短了,导致业务代码还没有处理完,MySQL负载均衡器 就关闭tcp连接了 这也不太可能,因为这个服务并没有什么耗时操作,当然还是去检查了负载均衡器的配置,设置的是60s。

代码问题,MySQL 连接无法释放 目前看起来应该是代码质量问题,加之本次数据有异常,触发到了以前某个没有测试到的点,目前看起来很有可能是这个原因

查找错误原因

由于代码的业务逻辑并不是我写的,我担心一时半会看不出来问题,所以直接使用 perf 把所有的调用关系使用火焰图给绘制出来。既然上面我们推断代码中没有释放mysql连接。无非就是:

确实没有调用close

有耗时操作(火焰图可以非常明显看到),导致超时了

mysql的事务没有正确处理,例如:rollback 或者 commit

由于火焰图包含的内容太多,为了让大家看清楚,我把一些不必要的信息进行了折叠。

图六:有问题的火焰图

火焰图很明显看到了开启了事务,但是在余下的部分,并没有看到 Commit 或者是Rollback 操作。这肯定会操作问题。然后也清楚看到出现问题的是:

MainController.update 方法内部,话不多说,直接到 update 方法中去检查。发现了如下代码:

func (c *MainController) update() (flag bool) {

o := orm.NewOrm()

o.Using("default")

o.Begin()

nilMap := getMapNil()

if nilMap == nil {// 这里只检查了是否为nil,并没有进行rollback或者commit

return false

}

nilMap[10] = 1

nilMap[20] = 2

if nilMap == nil && len(nilMap) == 0 {

o.Rollback()

return false

}

sql := "update tb_user set name=%s where id=%d"

res, err := o.Raw(sql, "Bug", 2).Exec()

if err == nil {

num, _ := res.RowsAffected()

fmt.Println("mysql row affected nums: ", num)

o.Commit()

return true

}

o.Rollback()

return false

}

至此,全部分析结束。经过查看 getMapNil 返回了nil,但是下面的判断条件没有进行回滚。

if nilMap == nil {

o.Rollback()// 这里进行回滚

return false

}

总结

整个分析过程还是废了不少时间。最主要的是主观意识太强,觉得运行了一年没有出问题的为什么会突然出问题?因此一开始是质疑 SRE、DBA、各种基础设施出了问题(人总是先怀疑别人)。导致在这上面费了不少时间。

理一下正确的分析思路:

出现问题后,立马应该检查日志,确实日志没有发现问题;

监控明确显示了socket不断增长,很明确立马应该使用 netstat 检查情况看看是哪个进程的锅;

根据 netstat 的检查,使用 tcpdump 抓包分析一下为什么连接会被动断开(TCP知识非常重要);

如果熟悉代码应该直接去检查业务代码,如果不熟悉则可以使用 perf 把代码的调用链路打印出来;

不论是分析代码还是火焰图,到此应该能够很快定位到问题。

那么本次到底是为什么会出现 CLOSE_WAIR 呢?大部分同学应该已经明白了,我这里再简单说明一下:

由于那一行代码没有对事务进行回滚,导致服务端没有主动发起close。因此 MySQL负载均衡器 在达到 60s 的时候主动触发了close操作,但是通过tcp抓包发现,服务端并没有进行回应,这是因为代码中的事务没有处理,因此从而导致大量的端口、连接资源被占用。在贴一下挥手时的抓包数据:

# mysql 主动断开链接

11:38:45.693382 IP 172.18.0.3.3306 > 172.18.0.5.38822: Flags [F.], seq 123, ack 144, win 227, options [nop,nop,TS val 3000355 ecr 2997359], length 0 # MySQL负载均衡器发送fin包给我

11:38:45.740958 IP 172.18.0.5.38822 > 172.18.0.3.3306: Flags [.], ack 124, win 229, options [nop,nop,TS val 3000360 ecr 3000355], length 0 # 我回复ack给它

希望此文对大家排查线上问题有所帮助。为了便于帮助大家理解,下面附上正确情况下的火焰图与错误情况下的火焰图。大家可以自行对比。

正确情况下的火焰图 : https://dayutalk.cn/img/right.svg

错误情况的火焰图 : https://dayutalk.cn/img/err.svg

我参考的一篇文章对这种情况提出了两个思考题,我觉得非常有意义,大家自己思考下:

为什么一台机器几百个 CLOSE_WAIR 就导致不可继续访问?我们不是经常说一台机器有 65535 个文件描述符可用吗?

为什么我有负载均衡,而两台部署服务的机器确几乎同时出了 CLOSE_WAIR ?

来自:http://blog.csdn.net/shootyou/article/details/6622226

在服务器的日常维护过程中,会经常用到下面的命令:

netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

它会显示例如下面的信息:

TIME_WAIT 814

CLOSE_WAIT 1

FIN_WAIT1 1

ESTABLISHED 634

SYN_RECV 2

LAST_ACK 1

常用的三个状态是:ESTABLISHED 表示正在通信,TIME_WAIT 表示主动关闭,CLOSE_WAIT 表示被动关闭。

具体每种状态什么意思,其实无需多说,看看下面这种图就明白了,注意这里提到的服务器应该是业务请求接受处理的一方:

这么多状态不用都记住,只要了解到我上面提到的最常见的三种状态的意义就可以了。一般不到万不得已的情况也不会去查看网络状态,如果服务器出了异常,百分之八九十都是下面两种情况:

1.服务器保持了大量TIME_WAIT状态

2.服务器保持了大量CLOSE_WAIT状态

因为linux分配给一个用户的文件句柄是有限的(可以参考:http://blog.csdn.net/shootyou/article/details/6579139),而TIME_WAIT和CLOSE_WAIT两种状态如果一直被保持,那么意味着对应数目的通道就一直被占着,而且是“占着茅坑不使劲”,一旦达到句柄数上限,新的请求就无法被处理了,接着就是大量Too Many Open Files异常,tomcat崩溃。。。

下 面来讨论下这两种情况的处理方法,网上有很多资料把这两种情况的处理方法混为一谈,以为优化系统内核参数就可以解决问题,其实是不恰当的,优化系统内核参 数解决TIME_WAIT可能很容易,但是应对CLOSE_WAIT的情况还是需要从程序本身出发。现在来分别说说这两种情况的处理方法:

1.服务器保持了大量TIME_WAIT状态

这种情况比较常见,一些爬虫服务器或者WEB服务器(如果网管在安装的时候没有做内核参数优化的话)上经常会遇到这个问题,这个问题是怎么产生的呢?

从 上面的示意图可以看得出来,TIME_WAIT是主动关闭连接的一方保持的状态,对于爬虫服务器来说他本身就是“客户端”,在完成一个爬取任务之后,他就 会发起主动关闭连接,从而进入TIME_WAIT的状态,然后在保持这个状态2MSL(max segment lifetime)时间之后,彻底关闭回收资源。为什么要这么做?明明就已经主动关闭连接了为啥还要保持资源一段时间呢?这个是TCP/IP的设计者规定 的,主要出于以下两个方面的考虑:

1.防止上一次连接中的包,迷路后重新出现,影响新连接(经过2MSL,上一次连接中所有的重复包都会消失)

2. 可靠的关闭TCP连接。在主动关闭方发送的最后一个 ack(fin) ,有可能丢失,这时被动方会重新发fin, 如果这时主动方处于 CLOSED 状态 ,就会响应 rst 而不是 ack。所以主动方要处于 TIME_WAIT 状态,而不能是 CLOSED 。另外这么设计TIME_WAIT 会定时的回收资源,并不会占用很大资源的,除非短时间内接受大量请求或者受到攻击。

关于MSL引用下面一段话:

MSL 為 一個 TCP Segment (某一塊 TCP 網路封包) 從來源送到目的之間可續存的時間 (也就是一個網路封包在網路上傳輸時能存活的時間),由 於 RFC 793 TCP 傳輸協定是在 1981 年定義的,當時的網路速度不像現在的網際網路那樣發達,你可以想像你從瀏覽器輸入網址等到第一 個 byte 出現要等 4 分鐘嗎?在現在的網路環境下幾乎不可能有這種事情發生,因此我們大可將 TIME_WAIT 狀態的續存時間大幅調低,好 讓 連線埠 (Ports) 能更快空出來給其他連線使用。

再引用网络资源的一段话:

值 得一说的是,对于基于TCP的HTTP协议,关闭TCP连接的是Server端,这样,Server端会进入TIME_WAIT状态,可 想而知,对于访 问量大的Web Server,会存在大量的TIME_WAIT状态,假如server一秒钟接收1000个请求,那么就会积压 240*1000=240,000个 TIME_WAIT的记录,维护这些状态给Server带来负担。当然现代操作系统都会用快速的查找算法来管理这些 TIME_WAIT,所以对于新的 TCP连接请求,判断是否hit中一个TIME_WAIT不会太费时间,但是有这么多状态要维护总是不好。

HTTP协议1.1版规定default行为是Keep-Alive,也就是会重用TCP连接传输多个 request/response,一个主要原因就是发现了这个问题。

也就是说HTTP的交互跟上面画的那个图是不一样的,关闭连接的不是客户端,而是服务器,所以web服务器也是会出现大量的TIME_WAIT的情况的。

现在来说如何来解决这个问题。

解决思路很简单,就是让服务器能够快速回收和重用那些TIME_WAIT的资源。

下面来看一下我们网管对/etc/sysctl.conf文件的修改:

#对于一个新建连接,内核要发送多少个 SYN 连接请求才决定放弃,不应该大于255,默认值是5,对应于180秒左右时间

net.ipv4.tcp_syn_retries=2

#net.ipv4.tcp_synack_retries=2

#表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为300秒

net.ipv4.tcp_keepalive_time=1200

net.ipv4.tcp_orphan_retries=3

#表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间

net.ipv4.tcp_fin_timeout=30

#表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。

net.ipv4.tcp_max_syn_backlog = 4096

#表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭

net.ipv4.tcp_syncookies = 1

#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭

net.ipv4.tcp_tw_reuse = 1

#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭

net.ipv4.tcp_tw_recycle = 1

##减少超时前的探测次数

net.ipv4.tcp_keepalive_probes=5

##优化网络设备接收队列

net.core.netdev_max_backlog=3000

修改完之后执行/sbin/sysctl -p让参数生效。

这里头主要注意到的是net.ipv4.tcp_tw_reuse

net.ipv4.tcp_tw_recycle

net.ipv4.tcp_fin_timeout

net.ipv4.tcp_keepalive_*

这几个参数。

net.ipv4.tcp_tw_reuse和net.ipv4.tcp_tw_recycle的开启都是为了回收处于TIME_WAIT状态的资源。

net.ipv4.tcp_fin_timeout这个时间可以减少在异常情况下服务器从FIN-WAIT-2转到TIME_WAIT的时间。

net.ipv4.tcp_keepalive_*一系列参数,是用来设置服务器检测连接存活的相关配置。

2.服务器保持了大量CLOSE_WAIT状态

休息一下,喘口气,一开始只是打算说说TIME_WAIT和CLOSE_WAIT的区别,没想到越挖越深,这也是写博客总结的好处,总可以有意外的收获。

TIME_WAIT状态可以通过优化服务器参数得到解决,因为发生TIME_WAIT的情况是服务器自己可控的,要么就是对方连接的异常,要么就是自己没有迅速回收资源,总之不是由于自己程序错误导致的。

是CLOSE_WAIT就不一样了,从上面的图可以看出来,如果一直保持在CLOSE_WAIT状态,那么只有一种情况,就是在对方关闭连接之后服务器程

序自己没有进一步发出ack信号。换句话说,就是在对方连接关闭之后,程序里没有检测到,或者程序压根就忘记了这个时候需要关闭连接,于是这个资源就一直

被程序占着。个人觉得这种情况,通过服务器内核参数也没办法解决,服务器对于程序抢占的资源没有主动回收的权利,除非终止程序运行。

在那边日志里头我举了个场景,来说明CLOSE_WAIT和TIME_WAIT的区别,这里重新描述一下:

服 务器A是一台爬虫服务器,它使用简单的HttpClient去请求资源服务器B上面的apache获取文件资源,正常情况下,如果请求成功,那么在抓取完 资源后,服务器A会主动发出关闭连接的请求,这个时候就是主动关闭连接,服务器A的连接状态我们可以看到是TIME_WAIT。如果一旦发生异常呢?假设 请求的资源服务器B上并不存在,那么这个时候就会由服务器B发出关闭连接的请求,服务器A就是被动的关闭了连接,如果服务器A被动关闭连接之后程序员忘了 让HttpClient释放连接,那就会造成CLOSE_WAIT的状态了。

所以如果将大量CLOSE_WAIT的解决办法总结为一句话那就是:查代码。因为问题出在服务器程序里头啊。

统计在一台前端机上高峰时间TCP连接的情况,统计命令:

netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

结果:

除了ESTABLISHED,可以看到连接数比较多的几个状态是:FIN_WAIT1, TIME_WAIT, CLOSE_WAIT, SYN_RECV和LAST_ACK;下面的文章就这几个状态的产生条件、对系统的影响以及处理方式进行简单描述。

发现存在大量TIME_WAIT状态的连接

tcp        0      0 127.0.0.1:3306              127.0.0.1:41378             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:41379             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:39352             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:39350             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:35763             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:39372             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:39373             TIME_WAIT

tcp        0      0 127.0.0.1:3306              127.0.0.1:41176             TIME_WAIT

通过调整内核参数解决

vi /etc/sysctl.conf

编辑文件,加入以下内容:

net.ipv4.tcp_syncookies = 1

net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_tw_recycle = 1

net.ipv4.tcp_fin_timeout = 30

然后执行/sbin/sysctl -p让参数生效。

net.ipv4.tcp_syncookies = 1表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;

net.ipv4.tcp_tw_reuse = 1表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;

net.ipv4.tcp_tw_recycle = 1表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。

net.ipv4.tcp_fin_timeout修改系統默认的TIMEOUT时间

修改之后,再用命令查看TIME_WAIT连接数

netstat -ae|grep “TIME_WAIT” |wc –l

发现大量的TIME_WAIT 已不存在,mysql进程的占用率很快就降下来的,网站访问正常。

不过很多时候,出现大量的TIME_WAIT状态的连接,往往是因为网站程序代码中没有使用mysql.colse(),才导致大量的mysql  TIME_WAIT.

根据TCP协议定义的3次握手断开连接规定,发起socket主动关闭的一方 socket将进入TIME_WAIT状态,TIME_WAIT状态将持续2个MSL(Max Segment Lifetime),在Windows下默认为4分钟,即240秒,TIME_WAIT状态下的socket不能被回收使用. 具体现象是对于一个处理大量短连接的服务器,如果是由服务器主动关闭客户端的连接,将导致服务器端存在大量的处于TIME_WAIT状态的socket, 甚至比处于Established状态下的socket多的多,严重影响服务器的处理能力,甚至耗尽可用的socket,停止服务. TIME_WAIT是TCP协议用以保证被重新分配的socket不会受到之前残留的延迟重发报文影响的机制,是必要的逻辑保证.

在HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters,添加名为TcpTimedWaitDelay的

DWORD键,设置为60,以缩短TIME_WAIT的等待时间

http://kerry.blog.51cto.com/172631/105233/

修改之后,再用

netstat -ae|grep mysql

tcp        0      0 aaaa:50408               192.168.12.13:mysql           ESTABLISHED nobody     3224651

tcp        0      0 aaaa:50417               192.168.12.13:mysql           ESTABLISHED nobody     3224673

tcp        0      0 aaaa:50419               192.168.12.13:mysql           ESTABLISHED nobody     3224675

发现大量的TIME_WAIT 已不存在,mysql进程的占用率很快就降下来的,各网站访问正常!!

以上只是暂时的解决方法,最后仔细巡查发现是前天新上线的一个系统,程序代码中没有使用mysql.colse(),才导致大量的mysql  TIME_WAIT

如果你的服务器是Windows平台,可以修改下面的注册表键值:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]

"TcpTimedWaitDelay"=dword:0000001e

此值是TIME_WAIT状态的最长时间。缺省为240秒,最低为30秒,最高为300秒。建议为30秒。

注释:

(

1,TCP结束的过程如下:

Server                             Client

-------------- FIN -------------->  server: fin_wait_1

-------------- ACK ------------->  server发出ack后进入time_wait状态

Time_Wait的默认时间是2倍的MLS,就是240秒钟。MLS是TCP片在网上的最长存活时间。

TIME_Wait的主要作用是保证关闭的TCP端口不立即被使用。因为当网络存在延迟时,可能当某个端口被关闭后,网络中还有一些重传的TCP片在发向这个端口,如果这个端口立即建立新的TCP连接,则可能会有影响。所以使用2倍的MSL时间来限制这个端口立即被使用。

现在的问题在于,4分钟的时间有点长。

因此,Time_wait的影响,我想,首先每个TCP连接都各自有个数据结构,叫TCP Control Block.Time_wait的时候这个数据结构没有被释放。所以当有太多的TCP连接时,内存可能会被占用很多。

2,To ValorZ:TIME_WAIT状态也称为2MSL等待状态,而不是2MLS,笔误吧!

每个TCP报文在网络内的最长时间,就称为MSL(Maximum Segment Lifetime),它的作用和IP数据包的TTL类似。

RFC793指出,MSL的值是2分钟,但是在实际的实现中,常用的值有以下三种:30秒,1分钟,2分钟。

注意一个问题,进入TIME_WAIT状态的一般情况下是客户端,大多数服务器端一般执行被动关闭,不会进入TIME_WAIT状态,当在服务器端关闭某个服务再重新启动时,它是会进入TIME_WAIT状态的。

举例:

1.客户端连接服务器的80服务,这时客户端会启用一个本地的端口访问服务器的80,访问完成后关闭此连接,立刻再次访问服务器的80,这时客户端会启用另一个本地的端口,而不是刚才使用的那个本地端口。原因就是刚才的那个连接还处于TIME_WAIT状态。

2.客户端连接服务器的80服务,这时服务器关闭80端口,立即再次重启80端口的服务,这时可能不会成功启动,原因也是服务器的连接还处于TIME_WAIT状态。

windows

TcpTimedWaitDelay和MaxUserPort设置

描述:确定 TCP/IP 可释放已关闭连接并重用其资源前,必须经过的时间。

关闭和释放之间的此时间间隔通称 TIME_WAIT 状态或两倍最大段生命周期(2MSL)状态。

此时间期间,重新打开到客户机和服务器的连接的成本少于建立新连接。

减少此条目的值允许 TCP/IP 更快地释放已关闭的连接,为新连接提供更多资源。如果运行的应用程序需要快速释放和创建新连接,而且由于 TIME_WAIT 中存在很多连接,导致低吞吐量,则调整此参数。

如何查看或设置: 使用 regedit 命令访问 HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/ Services/TCPIP/Parameters 注册表子键并创建名为 TcpTimedWaitDelay 的新 REG_DWORD 值。

将此值设置为十进制 30,其为十六进制 0x0000001e。

该值将等待时间设置为 30 秒。

停止并重新启动系统。 缺省值:0xF0,它将等待时间设置为 240 秒(4 分钟)。

建议值:最小值为 0x1E,它将等待时间设置为 30 秒。

MaxUserPort 描述:确定在应用程序从系统请求可用用户端口时,TCP/IP 可指定的最高端口号。

如何查看或设置: 使用 regedit 命令访问 HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/ Services/TCPIP/Parameters 注册表子键并创建名为 MaxUserPort 的新 REG_DWORD 值。

停止并重新启动系统。

缺省值:无 建议值:至少十进制 32768。

注:当在 Windows NT 或 Windows 2000 操作系统上调整 WebSphere Application Server 时,同时使用这两个参数。

希望本站的知识能给您的工作、学习和生活带来方便和乐趣!

http://blog.csdn.net/gzh0222/article/details/8491178

1. 实际问题

初步查看发现,无法对外新建TCP连接时,线上服务器存在大量处于TIME_WAIT状态的TCP连接(最多的一次为单机10w+,其中引起报警的那个模块产生的TIME_WAIT约2w),导致其无法跟下游模块建立新TCP连接。

TIME_WAIT涉及到TCP释放连接过程中的状态迁移,也涉及到具体的socket api对TCP状态的影响,下面开始逐步介绍这些概念。

2. TCP状态迁移

面向连接的TCP协议要求每次peer间通信前建立一条TCP连接,该连接可抽象为一个4元组(four-tuple,有时也称socket pair):(local_ip, local_port, remote_ip,remote_port),这4个元素唯一地代表一条TCP连接。

1)TCP Connection Establishment

TCP建立连接的过程,通常又叫“三次握手”(three-way handshake),可用下图来示意:

可对上图做如下解释:

a. client向server发送SYN并约定初始包序号(sequence number)为J;

b. server发送自己的SYN并表明初始包序号为K,同时,针对client的SYNJ返回ACKJ+1(注:J+1表示server期望的来自该client的下一个包序为J+1);

c. client收到来自server的SYN+ACK后,发送ACKK+1,至此,TCP建立成功。

其实,在TCP建立时的3次握手过程中,还要通过SYN包商定各自的MSS,timestamp等参数,这涉及到协议的细节,本文旨在抛砖引玉,不再展开。

2)TCPConnection Termination

与建立连接的3次握手相对应,释放一条TCP连接时,需要经过四步交互(又称“四次挥手”),如下图所示:

可对上图做如下解释:

a. 连接的某一方先调用close()发起主动关闭(active close),该api会促使TCP传输层向remotepeer发送FIN包,该包表明发起active close的application不再发送数据(特别注意:这里“不再发送数据”的承诺是从应用层角度来看的,在TCP传输层,还是要将该application对应的内核tcp send buffer中当前尚未发出的数据发到链路上)。

remote peer收到FIN后,需要完成被动关闭(passive close),具体分为两步:

b. 首先,在TCP传输层,先针对对方的FIN包发出ACK包(主要ACK的包序是在对方FIN包序基础上加1);

c. 接着,应用层的application收到对方的EOF(end-of-file,对方的FIN包作为EOF传给应用层的application)后,得知这条连接不会再有来自对方的数据,于是也调用close()关闭连接,该close会促使TCP传输层发送FIN。

d. 发起主动关闭的peer收到remote peer的FIN后,发送ACK包,至此,TCP连接关闭。

注意1:TCP连接的任一方均可以首先调用close()以发起主动关闭,上图以client主动发起关闭做说明,而不是说只能client发起主动关闭。

注意2:上面给出的TCP建立/释放连接的过程描述中,未考虑由于各种原因引起的重传、拥塞控制等协议细节,感兴趣的同学可以查看各种TCP RFC Documents ,比如TCP RFC793。

3)TCP StateTransition Diagram

上面介绍了TCP建立、释放连接的过程,此处对TCP状态机的迁移过程做总体说明。将TCP RFC793中描述的TCP状态机迁移图摘出如下(下图引用自这里):

TCP状态机共含11个状态,状态间在各种socket apis的驱动下进行迁移,虽然此图看起来错综复杂,但对于有一定TCP网络编程经验的同学来说,理解起来还是比较容易的。限于篇幅,本文不准备展开详述,想了解具体迁移过程的新手同学,建议阅读《Linux Network Programming Volume1》第2.6节。

3. TIME_WAIT状态

经过前面的铺垫,终于要讲到与本文主题相关的内容了。 ^_^

从TCP状态迁移图可知,只有首先调用close()发起主动关闭的一方才会进入TIME_WAIT状态,而且是必须进入(图中左下角所示的3条状态迁移线最终均要进入该状态才能回到初始的CLOSED状态)。

从图中还可看到,进入TIME_WAIT状态的TCP连接需要经过2MSL才能回到初始状态,其中,MSL是指Max

Segment Lifetime,即数据包在网络中的最大生存时间。每种TCP协议的实现方法均要指定一个合适的MSL值,如RFC1122给出的建议值为2分钟,又如Berkeley体系的TCP实现通常选择30秒作为MSL值。这意味着TIME_WAIT的典型持续时间为1-4分钟。

TIME_WAIT状态存在的原因主要有两点:

1)为实现TCP这种全双工(full-duplex)连接的可靠释放

参考本文前面给出的TCP释放连接4次挥手示意图,假设发起active close的一方(图中为client)发送的ACK(4次交互的最后一个包)在网络中丢失,那么由于TCP的重传机制,执行passiveclose的一方(图中为server)需要重发其FIN,在该FIN到达client(client是active close发起方)之前,client必须维护这条连接的状态(尽管它已调用过close),具体而言,就是这条TCP连接对应的(local_ip, local_port)资源不能被立即释放或重新分配。直到romete peer重发的FIN达到,client也重发ACK后,该TCP连接才能恢复初始的CLOSED状态。如果activeclose方不进入TIME_WAIT以维护其连接状态,则当passive close方重发的FIN达到时,active close方的TCP传输层会以RST包响应对方,这会被对方认为有错误发生(而事实上,这是正常的关闭连接过程,并非异常)。

2)为使旧的数据包在网络因过期而消失

为说明这个问题,我们先假设TCP协议中不存在TIME_WAIT状态的限制,再假设当前有一条TCP连接:(local_ip, local_port, remote_ip,remote_port),因某些原因,我们先关闭,接着很快以相同的四元组建立一条新连接。本文前面介绍过,TCP连接由四元组唯一标识,因此,在我们假设的情况中,TCP协议栈是无法区分前后两条TCP连接的不同的,在它看来,这根本就是同一条连接,中间先释放再建立的过程对其来说是“感知”不到的。这样就可能发生这样的情况:前一条TCP连接由local peer发送的数据到达remote peer后,会被该remot peer的TCP传输层当做当前TCP连接的正常数据接收并向上传递至应用层(而事实上,在我们假设的场景下,这些旧数据到达remote peer前,旧连接已断开且一条由相同四元组构成的新TCP连接已建立,因此,这些旧数据是不应该被向上传递至应用层的),从而引起数据错乱进而导致各种无法预知的诡异现象。作为一种可靠的传输协议,TCP必须在协议层面考虑并避免这种情况的发生,这正是TIME_WAIT状态存在的第2个原因。

具体而言,local peer主动调用close后,此时的TCP连接进入TIME_WAIT状态,处于该状态下的TCP连接不能立即以同样的四元组建立新连接,即发起active close的那方占用的local port在TIME_WAIT期间不能再被重新分配。由于TIME_WAIT状态持续时间为2MSL,这样保证了旧TCP连接双工链路中的旧数据包均因过期(超过MSL)而消失,此后,就可以用相同的四元组建立一条新连接而不会发生前后两次连接数据错乱的情况。

另一比较深入的说法

TIME_WAIT状态的存在有两个理由:(1)让4次握手关闭流程更加可靠;4次握手的最后一个ACK是是由主动关闭方发送出去的,若这个ACK丢失,被动关闭方会再次发一个FIN过来。若主动关闭方能够保持一个2MSL的TIME_WAIT状态,则有更大的机会让丢失的ACK被再次发送出去。(2)防止lost duplicate对后续新建正常链接的传输造成破坏。lost duplicate在实际的网络中非常常见,经常是由于路由器产生故障,路径无法收敛,导致一个packet在路由器A,B,C之间做类似死循环的跳转。IP头部有个TTL,限制了一个包在网络中的最大跳数,因此这个包有两种命运,要么最后TTL变为0,在网络中消失;要么TTL在变为0之前路由器路径收敛,它凭借剩余的TTL跳数终于到达目的地。但非常可惜的是TCP通过超时重传机制在早些时候发送了一个跟它一模一样的包,并先于它达到了目的地,因此它的命运也就注定被TCP协议栈抛弃。另外一个概念叫做incarnation connection,指跟上次的socket pair一摸一样的新连接,叫做incarnation of previous connection。lost duplicate加上incarnation connection,则会对我们的传输造成致命的错误。大家都知道TCP是流式的,所有包到达的顺序是不一致的,依靠序列号由TCP协议栈做顺序的拼接;假设一个incarnation connection这时收到的seq

mysql 大量close wait_线上大量CLOSE_WAIT原因排查相关推荐

  1. python close_wait_线上大量CLOSE_WAIT原因深入分析

    这一次重启真的无法解决问题了:一次 MySQL 主动关闭,导致服务出现大量 CLOSE_WAIT 的全流程排查过程. 近日遇到一个线上服务 socket 资源被不断打满的情况.通过各种工具分析线上问题 ...

  2. 一次线上服务fullGC原因排查

    2017年12月09日 21:39:46 阅读数:384 一.现象 早上九点多又收到了fullGC次数过高的应用监控告警{P1}{故障}JVM Old GC all(#3) full_gc_count ...

  3. 读书笔记:线上性能问题初步排查方法

    线上性能问题初步排查方法  首发于并发网,作者:方腾飞 引言 有时候有很多问题只有在线上或者预发环境才能发现,而线上又不能Debug,所以线上问题定位就只能看日志,系统状态和Dump线程,本文只是简单 ...

  4. 线上FullGC频繁的排查

    线上FullGC频繁的排查 问题 前段时间发现线上的一个dubbo服务Full GC比较频繁,大约每两天就会执行一次Full GC. Full GC的原因 我们知道Full GC的触发条件大致情况有以 ...

  5. 服务器芯片缺货吗,华为线上缺货的原因找到了!芯片只是其一!线下销售员说出实话!...

    原标题:华为线上缺货的原因找到了!芯片只是其一!线下销售员说出实话! 大家都知道,华为如今不少的机型都很缺货.而究其根本的原因还是因为芯片供应上出现了问题.如果说没有芯片上的限制,或许华为不会面临当下 ...

  6. mysql内存爆_线上MySQL机器内存爆掉原因分析与解决

    现象: 阿里金融某业务的MySQL机器的内存每隔几天就会增长,涨上去后,却不下来.累积后内存爆掉. 分析: 此业务是间隔的对MySQL有大访问,其它时间几乎无访问.排查发现,内存涨时,一般会有MySQ ...

  7. mysql len hex asc_线上频出MySQL死锁问题!分享一下自己教科书般的排查和分析过程!...

    本文主要是讲过程与思路,从手上的日志来反推故障现场,最后模拟出事故现场.没有过度讲解理论的一些知识,主要是偏分析. 文章参考的理论知识在最后,同时也将本次案例提交 ISSUE 给:https://gi ...

  8. mysql爆内存_线上MySQL数据库机器内存爆掉原因分析与解决

    本文主要向大家介绍了线上MySQL数据库机器内存爆掉原因分析与解决,通过具体的内容向大家展现,希望对大家学习MySQL数据库有所帮助. 现象: 阿里金融某业务的MySQL机器的内存每隔几天就会增长,涨 ...

  9. doctor mysql数据导入_线上环境mysql主从同步的搭建过程

    之前搭建过一套主从同步的mysql集群,但是是基于新数据库,而这次线上环境要升级成主从同步的集群,记录一下升级过程和中间遇到的各种问题. 由于是直接对线上数据库进行修改,因此要保证对线上环境造成尽量小 ...

最新文章

  1. Zend Guard 各版本下载【破解方法】
  2. python真的超过java了吗-java会被python淘汰吗?
  3. java中的IO详解(下)
  4. boost::geometry::model::segment用法的测试程序
  5. mysql 中如何删除重复的数据_mysql如何快速删除重复的数据
  6. java 001 002_69期-Java SE-019-实用类-2-001-002
  7. python爬取数据生成词云_Python 爬取生成中文词云以爬取知乎用户属性为例
  8. vega56刷64_Vega56刷入BIOS跑分直逼旗舰Vega64
  9. 查询分析300万笔记录_MySQL之慢查询日志
  10. mysql-innodb-undo和redo
  11. Win10卸载微软sql服务器,Win10 64位如何彻底卸载Sql Server 2012 SQL2012卸载后无法重装的解决方法...
  12. UART串口通信协议详解
  13. thoughtworks面试总结
  14. 使用二维码解决固定资产管理的难题
  15. 几种常见电源防反接设计
  16. 珍大户 认知世界的经济学 经济学核心原理 思维导图
  17. iphone ipad等苹果设备30针数据线接口定义,大家可能有用
  18. stm32 mbed 入门教程(一)---前期准备
  19. 红米note8Pro6400万像素爆发,但不会这些拍照技巧,四摄等于摆设
  20. 关于有限元应力结果精度的几点讨论

热门文章

  1. 《An Introduction to Ray Tracing》—— 2.4 Ray/Box Intersection
  2. 数据分析在企业中的应用
  3. 微信小程序支付-付款(Java后台)
  4. 兄弟mfc9140cdn无法识别_我共享了Brother打印设备。现在只能打印但无法扫描,该如何解决? .| Brother...
  5. 【web组件库系列】封装自己的字体图标库
  6. 【待完善】MongoDB - 数据模型
  7. 南开大学计算机学院夏令营,2022保研夏令营:南开大学计算机学院云端夏令营通知...
  8. javaweb 获取服务器整个文件夹下的文件_详细得不要不要的 JavaWeb快速入门,值得收藏!...
  9. 计算机打印机节支措施,“节支降耗,从我做起 ”倡导篇 ——节约纸张
  10. Android调用系统相册、拍照以及裁剪最简单的实现(兼容7.0)