循环神经网络

一.研究背景

  • 1933年,西班牙神经生物学家Rafael Lorente de Nó发现大脑皮层(cerebral cortex)的解剖结构允许刺激在神经回路中循环传递,并由此提出反响回路假设(reverberating circuit hypothesis)
  • 1982年,美国学者John Hopfield基于Little (1974) [12] 的神经数学模型使用二元节点建立了具有结合存储(content-addressable memory)能力的神经网络,即Hopfield神经网络
  • 1986年,Michael I. Jordan基于Hopfield网络的结合存储概念,在分布式并行处理(parallel distributed processing)理论下建立了新的循环神经网络,即Jordan网络,也被称为简单循环网络
  • 1989年,Ronald Williams和David Zipser提出了循环神经网络的实时循环学习(Real-Time Recurrent Learning, RTRL) [20] 。随后Paul Werbos在1990年提出了循环神经网络的随时间反向传播(BP Through Time,BPTT) [21] ,RTRL和BPTT被沿用至今,是循环神经网络进行学习的主要方法
  • 1991年,Sepp Hochreiter发现了循环神经网络的长期依赖问题(long-term dependencies problem),即在对序列进行学习时,循环神经网络会出现梯度消失(gradient vanishing)和梯度爆炸(gradient explosion)现象,无法掌握长时间跨度的非线性关系,为解决长期依赖问题,大量优化理论得到引入并衍生出许多改进算法

二.简介

RNN的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。但是在实践中,为了降低复杂性往往假设当前的状态只与前面的几个状态相关,下图便是一个典型的RNN:

(图片来自网络)

三. 结构

(图片来自网络)

3.1 循环结构

规范化一点, 正如上面的例子一样,当前的数据依赖于之前的信息, 设有一状态序列数据{st}

要表示这一性质,典型的处理方式:
st=f(st−1,θ)

其中f() 为映射(在RNN中可以简单的理解激活函数), θ 为参数. 从上式可以看出, 1). 映射是与时间不相关的. 2). θ 也是与时间无关的,这里体现了循环结构(在RNN中)的很重要性质: 参数(主要为权值参数)共享(parameter sharing).

上式可以用另一种形式(展开式)表示:

如果状态序列中的每个数据不只受其前面信息的影响,还受外部信息的影响,那么循环结构可以表示成:
st=f(st−1,xt,θ)

其中xt为外部信息序列的第t个元素. 这个就是RNN(简单的)使用的循环结构.

写成带权重的形式:
st=f(Wst−1+Uxt+bt)

为简洁,可以把偏置省略,可以将其看成是U中的(额外)第一维(元素都为 1),后面的BPTT推导将采用此种方式.

如果考虑输出层:

3.2 RNN 结构






3.3 双向循环神经网络结构


(图片来自网络)

前面介绍的循环神经网络是单向的,每一个时刻的输出依赖于比它早的时刻的输入值,这没有利用未来时刻的信息,对于有些问题,当前时刻的输出不仅与过去时刻的数据有关,还与将来时刻的数据有关,为此Schuster等人设计了双向循环神经网络[9],它用两个不同的循环层分别从正向和反向对数据进行扫描。正向传播时的流程为:

1.循环,对t=1,…T

用正向循环层进行正向传播,记住每一个时刻的输出值

结束循环

2.循环,对t=T,…1

用反向循环层进行正向传播,记住每一个时刻的输出值

结束循环

3.循环,对所有的t,可以按照任意顺序进行计算

用正向和反向循环层的输出值作为输出层的输入,计算最终的输出值

结束循环

下面用一个简单的例子来说明,假设双向循环神经网络的输入序列为x1,…,x4。首先用第一个循环层进行正向迭代,得到隐含层的正向输出序列:

在这里由x1决定,由x1,x2决定,由x1 , . . . , x3决定,由x1 , . . . , x4 决定。即每个时刻的状态值由到当前时刻为止的所有输入值序列决定,这里利用的是序列的过去信息。然后用第二个循环层进行反向迭代,输入顺序是x4 , …, x1,得到隐含层的反向输出序列:

在这里,由x4决定,由x4, x3决定,由x4,…,x2 决定,由x4,…,x1决定。即每个时刻的状态值由它之后的输入序列决定,这里利用的是序列未来的信息。

然后将每个时刻的隐含层正向输出序列和反向输出序列合并起来:

送入神经网络中后面的层进行处理,此时,各个时刻的处理顺序是随意的,可以不用按照输入序列的时间顺序。

3.4 深度循环神经网络


(图片来自网络)

上面我们介绍的循环神经网络只有一个输入层,一个循环层和一个输出层,这是一个浅层网络。和全连接网络以及卷积网络一样,我们可以把它推广到任意多个隐含层的情况,得到深度循环神经网络[11]。

这里有3种方案,第一种方案为Deep Input-to-Hidden Function,在循环层之前加入多个普通的前馈层,将输入向量进行多层映射之后再送入循环层进行处理。

第二种方案是Deep Hidden -to-Hidden Transition,它使用多个循环层,这和前馈型神经网络类似,唯一不同的是计算隐含层输出的时候需要利用本隐含层在上一个时刻的输出值。

第三种方案是Deep Hidden-to-Output Function,它在循环层到输出层之间加入多前馈层,这和第一种情况类似。

由于循环层一般用tanh作为激活函数,层次过多之后会导致梯度消失问题,和残差网络类似,可以采用跨层连接的方案。在语音识别、自然语言处理问题上,我们会看到深层循环神经网络的应用,实验结果证明深层网络比浅层网络有更好的精度。

四. 训练算法-----BPTT算法

前面我们介绍了循环神经网络的结构,接下来要解决的问题是网络的参数如何通过训练确定。由于循环神经网络的输入是时间序列,因此每个训练样本是一个时间序列,包含多个相同维度的向量。解决循环神经网络训练问题的算法是Back Propagation Through Time算法,简称BPTT[2-4],原理和标准的反向传播算法类似,都是建立误差项的递推公式,根据误差项计算出损失函数对权重矩阵、偏置向量的梯度值。不同的是,全连接神经网络中递推是在层之间建立的,而这里是沿着时间轴建立的。

BPTT算法伪代码

五.循环神经网络面临的挑战

循环神经网络与其他类型的神经网络共同要面对的是梯度消失问题,对此出现了一些解决方案,如LSTM等。相比卷积神经网络,循环神经网络在结构上的改进相对要少一些。

5.1梯度消失问题

和前馈型神经网络一样,循环神经网络在进行梯度反向传播时也面临着梯度消失和梯度爆炸问题,只不过这种消逝问题表现在时间轴上,即如果输入序列的长度很长,我们很难进行有效的梯度更新。

梯度消失问题发生时,靠近输出层的hidden layer 3的权值更新相对正常,但是靠近输入层的hidden layer1的权值更新会变得很慢,导致靠近输入层的隐藏层权值几乎不变,扔接近于初始化的权值。这就导致hidden layer 1 相当于只是一个映射层,对所有的输入做了一个函数映射,这时此深度神经网络的学习就等价于只有后几层的隐藏层网络在学习。

5.2 如何解决梯度消失?

梯度消失和梯度爆炸问题都是因为网络太深,网络权值更新不稳定造成的,本质上是因为梯度反向传播中的连乘效应。对于更普遍的梯度消失问题,可以考虑以下三种方案解决:

  • 用ReLU、Leaky ReLU、PReLU、RReLU、Maxout等替代sigmoid函数。
  • 用Batch Normalization。
  • LSTM的结构设计也可以改善RNN中的梯度消失问题。

参考:
《深度学习》 花书
复旦大学 《深度学习》

《深度学习》之 循环神经网络 原理 超详解相关推荐

  1. 深度学习之循环神经网络(2)循环神经网络原理

    深度学习之循环神经网络(2)循环神经网络原理 1. 全连接层 2. 共享权值 3. 全局语义 4. 循环神经网络  现在我们来考虑如何吃力序列信号,以文本序列为例,考虑一个句子: "I di ...

  2. 水很深的深度学习-Task05循环神经网络RNN

    循环神经网络 Recurrent Neural Network 参考资料: Unusual-Deep-Learning 零基础入门深度学习(5) - 循环神经网络 史上最小白之RNN详解_Tink19 ...

  3. 深度学习之循环神经网络(10)GRU简介

    深度学习之循环神经网络(10)GRU简介 1. 复位门 2. 更新门 3. GRU使用方法  LSTM具有更长的记忆能力,在大部分序列任务上面都取得了比基础RNN模型更好的性能表现,更重要的是,LST ...

  4. 深度学习之循环神经网络(8)长短时记忆网络(LSTM)

    深度学习之循环神经网络(8)长短时记忆网络(LSTM) 0. LSTM原理 1. 遗忘门 2. 输入门 3. 刷新Memory 4. 输出门 5. 小结  循环神经网络除了训练困难,还有一个更严重的问 ...

  5. 深度学习之循环神经网络(4)RNN层使用方法

    深度学习之循环神经网络(4)RNN层使用方法 1. SimpleRNNCell 2. 多层SimpleRNNCell网络 3. SimpleRNN层  在介绍完循环神经网络的算法原理之后,我们来学习如 ...

  6. 【深度学习】循环神经网络(RNN)的tensorflow实现

    [深度学习]循环神经网络(RNN)的tensorflow实现 一.循环神经网络原理 1.1.RNN的网络结构 1.2.RNN的特点 1.3.RNN的训练 二.循环神经网络的tensorflow实现 参 ...

  7. 解析深度学习:卷积神经网络原理与视觉实践

    解析深度学习:卷积神经网络原理与视觉实践 魏秀参 著 ISBN:9787121345289 包装:平装 开本:16开 正文语种:中文 出版社: 电子工业出版社 出版时间:2018-11-01

  8. 深度学习之循环神经网络(12)预训练的词向量

    深度学习之循环神经网络(12)预训练的词向量  在情感分类任务时,Embedding层是从零开始训练的.实际上,对于文本处理任务来说,领域知识大部分是共享的,因此我们能够利用在其它任务上训练好的词向量 ...

  9. 深度学习之循环神经网络(11-b)GRU情感分类问题代码

    深度学习之循环神经网络(11-b)GRU情感分类问题代码 1. Cell方式 代码 运行结果 2. 层方式 代码 运行结果 1. Cell方式 代码 import os import tensorfl ...

最新文章

  1. 谭浩强《C++程序设计》学习
  2. linux文件夹多个空格,linux-在“ for”循环中读取带有空格,带有多个输入文件的制表符的完整行...
  3. 如何优化 Android Studio 启动、编译和运行速度?
  4. 解决虚拟机能ping通宿主机,而宿主机不能ping通虚拟机
  5. 我有机器人合体成一个大力神_史上最菜大力神(三)——SS加强级高塔
  6. 安全云盘项目(三):3.1 Qt的工具_MVD架构和信号槽原理分析
  7. 宁波大学计算机网络实验五,宁波大学计算机网络实验答案
  8. Android 软键盘盖住输入框的问题
  9. mysql日志打开_MySql 打开日志文件
  10. Flask最强攻略 - 跟DragonFire学Flask - 第十六篇 Flask-Migrate
  11. 海康、大华、科达、华为摄像机的二次开发Demo、SDK
  12. excel中多条件求和_在Excel中求和的7种方法
  13. 翻译-现代浏览器的架构与发展
  14. 树莓派控制4路5v继电器开关
  15. 爬虫(一):用python爬取亚马逊所有家具种类前100名的商品信息(上)
  16. linux系统修改ip地址教程。
  17. 威纶触摸屏中如何组态设置多国语言进行切换?
  18. Developing Large Web Applications
  19. 竞赛题目分享1:跳楼梯
  20. 熟能生巧 汽车停车入位技巧解析-倒车入库--侧边停车

热门文章

  1. 关于SecureCRT的注册错误问题
  2. 检查单 2015-08-30-01
  3. MOS管发热原因-总结有4大关键技术原因解析
  4. 如何修改eclipse编辑器背景色
  5. 【苹果家庭推送】这是iPhone上SMS功能的严重安全漏洞
  6. 使用 GeForce Experience 更新 NVIDIA GPU 显卡驱动
  7. apex服务器不稳定,APEX英雄提高帧数稳定144修改方法
  8. 吐槽微博SDK的接入
  9. 亚马逊将在纽约再开一家无人收银便利店 占地1700平方英尺周二开业
  10. 用Pascal语言实现线性表——原创