1、如何用显著性检测来解释卷积神经网络的收敛性?

显著性是指模型在不同参数设置情况下对分类效果的综合评价,而收敛是指模型在训练过程中梯度变化趋于平缓的状态,也就是说训练完成了。这两个概念完全不搭界。

谷歌人工智能写作项目:小发猫

2、神经网络训练最后的收敛图 best training performance is NaN at。。。什么意思,是没有收敛吗

NaN意思是Not A Number,除非是发散,不过一般不会出现这种情况神经网络收敛的定义。可能你的程序有错。
如果是新定义算法的话理论上的收敛要证明,可以证明它在迭代次数趋近无穷的时候等于某一解,也可以证明它满足李普希兹条件(就是带有完备范数和李普希兹常数的那个),这种情形下我们叫做收敛,要是用已有算法或者干脆就是BP算法的时候不需要你证明.理论上不收敛的情况是这样,当迭代次数趋近无穷的时候,权向量的解不唯一.
实际上的收敛是这样,给定一个最大迭代次数n,一个误差限erl,反向传播算法应该很容易找,我不往上写了,每一步权值修正都会使er减小,直观的看就是权向量的分量沿着梯度减小的方向在前进,虽然理论上样本足够大并且n趋于无穷的时候会收敛,但是实际上有可能出现当迭代到第n次,误差er依然大于误差限erl的情况,也就是说我们没有解出来满足要求的权向量,所以网络训练失败,叫做不收敛.当然,也可以使用梯度限来作为迭代终止的条件,这种情况下不收敛就是梯度在迭代了n次以后没有小于某一值,从而没有求出满足要求的权向量;收敛就是求出了满足梯度限的权向量.

3、bp神经网络收敛问题

当然是越慢。因为已经接近最低点,训练也进入误差曲面的平坦区,每次搜索的误差下降速度是减慢的。这一点可以在BP神经网络的误差调整公式上看出。
事实上收敛速度逐渐减慢,这是正常的,如果一定要避免这种情况,可以自适应改变学习率。
由于传统BP算法的学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。

4、神经网络参数如何确定

神经网络各个网络参数设定原则:

①、网络节点  网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定  初始权值是不应完全相等的一组值。已经证明,即便确定  存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率  在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。

④、动态参数  动态系数的选择也是经验性的,一般取0.6 ~0.8。

⑤、允许误差  一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。

⑥、迭代次数  一般取1000次。由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。

⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。

⑧、数据转换。在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。

扩展资料:

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

1.生物原型

从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2.建立模型

根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3.算法

在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

5、神经网络是什么?

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

6、bp神经网络如果不收敛,预测都用同一种算法?

收敛和迭代算法有关.
反向传播算法是定义一个误差er(往往是输出结果与预想结果之间的某个范数),然后求出满足误差极小的权向量.如果把误差看成一个连续函数(泛函)的话,求对权向量各分量的偏导为0即可,但是实际上它是离散的,所以我们需要用迭代来求最小梯度.
如果是新定义算法的话理论上的收敛要证明,可以证明它在迭代次数趋近无穷的时候等于某一解,也可以证明它满足李普希兹条件(就是带有完备范数和李普希兹常数的那个),这种情形下我们叫做收敛,要是用已有算法或者干脆就是BP算法的时候不需要你证明.理论上不收敛的情况是这样,当迭代次数趋近无穷的时候,权向量的解不唯一.
实际上的收敛是这样,给定一个最大迭代次数n,一个误差限erl,反向传播算法应该很容易找,我不往上写了,每一步权值修正都会使er减小,直观的看就是权向量的分量沿着梯度减小的方向在前进,虽然理论上样本足够大并且n趋于无穷的时候会收敛,但是实际上有可能出现当迭代到第n次,误差er依然大于误差限erl的情况,也就是说我们没有解出来满足要求的权向量,所以网络训练失败,叫做不收敛.当然,也可以使用梯度限来作为迭代终止的条件,这种情况下不收敛就是梯度在迭代了n次以后没有小于某一值,从而没有求出满足要求的权向量;收敛就是求出了满足梯度限的权向量

7、神经网络训练loss收敛的问题

这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下: 而交叉熵则是为了防止网络在训练后期迟缓而提出的一种损失函数,计算方式如下:

8、有人可以介绍一下什么是"神经网络"吗?

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络
都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的
见解。目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适
应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经
系统对真实世界物体所作出的交互反应。"
如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方
式进行比较,就可以看出人脑具有以下鲜明特征:
1. 巨量并行性。
在冯·诺依曼机中,信息处理的方式是集中、串行的,即所有的程序指
令都必须调到CPU中后再一条一条地执行。而人在识别一幅图像或作出一项
决策时,存在于脑中的多方面的知识和经验会同时并发作用以迅速作出解答。
据研究,人脑中约有多达10^(10)~10^(11)数量级的神经元,每一个神经元
具有103数量级的连接,这就提供了巨大的存储容量,在需要时能以很高的
反应速度作出判断。
2. 信息处理和存储单元结合在一起。
在冯·诺依曼机中,存储内容和存储地址是分开的,必须先找出存储器的
地址,然后才能查出所存储的内容。一旦存储器发生了硬件故障,存储器中
存储的所有信息就都将受到毁坏。而人脑神经元既有信息处理能力又有存储
功能,所以它在进行回忆时不仅不用先找存储地址再调出所存内容,而且可
以由一部分内容恢复全部内容。当发生"硬件"故障(例如头部受伤)时,并
不是所有存储的信息都失效,而是仅有被损坏得最严重的那部分信息丢失。
3. 自组织自学习功能。
冯·诺依曼机没有主动学习能力和自适应能力,它只能不折不扣地按照
人们已经编制好的程序步骤来进行相应的数值计算或逻辑计算。而人脑能够
通过内部自组织、自学习的能力,不断地适应外界环境,从而可以有效地处
理各种模拟的、模糊的或随机的问题。
神经网络研究的主要发展过程大致可分为四个阶段:
1. 第一阶段是在五十年代中期之前。
西班牙解剖学家Cajal于十九世纪末创立了神经元学说,该学说认为神经
元的形状呈两极,其细胞体和树突从其他神经元接受冲动,而轴索则将信号
向远离细胞体的方向传递。在他之后发明的各种染色技术和微电极技术不断
提供了有关神经元的主要特征及其电学性质。
1943年,美国的心理学家W.S.McCulloch和数学家W.A.Pitts在论文《神经
活动中所蕴含思想的逻辑活动》中,提出了一个非常简单的神经元模型,即
M-P模型。该模型将神经元当作一个功能逻辑器件来对待,从而开创了神经
网络模型的理论研究。
1949年,心理学家D.O. Hebb写了一本题为《行为的组织》的书,在这本
书中他提出了神经元之间连接强度变化的规则,即后来所谓的Hebb学习法则。
Hebb写道:"当神经细胞A的轴突足够靠近细胞B并能使之兴奋时,如果A重
复或持续地激发B,那么这两个细胞或其中一个细胞上必然有某种生长或代
谢过程上的变化,这种变化使A激活B的效率有所增加。"简单地说,就是
如果两个神经元都处于兴奋状态,那么它们之间的突触连接强度将会得到增
强。
五十年代初,生理学家Hodykin和数学家Huxley在研究神经细胞膜等效电
路时,将膜上离子的迁移变化分别等效为可变的Na+电阻和K+电阻,从而建
立了著名的Hodykin-Huxley方程。
这些先驱者的工作激发了许多学者从事这一领域的研究,从而为神经计
算的出现打下了基础。
2. 第二阶段从五十年代中期到六十年代末。
1958年,F.Rosenblatt等人研制出了历史上第一个具有学习型神经网络
特点的模式识别装置,即代号为Mark I的感知机(Perceptron),这一重
大事件是神经网络研究进入第二阶段的标志。对于最简单的没有中间层的
感知机,Rosenblatt证明了一种学习算法的收敛性,这种学习算法通过迭代
地改变连接权来使网络执行预期的计算。
稍后于Rosenblatt,B.Widrow等人创造出了一种不同类型的会学习的神经
网络处理单元,即自适应线性元件Adaline,并且还为Adaline找出了一种有
力的学习规则,这个规则至今仍被广泛应用。Widrow还建立了第一家神经计
算机硬件公司,并在六十年代中期实际生产商用神经计算机和神经计算机软
件。
除Rosenblatt和Widrow外,在这个阶段还有许多人在神经计算的结构和
实现思想方面作出了很大的贡献。例如,K.Steinbuch研究了称为学习矩阵
的一种二进制联想网络结构及其硬件实现。N.Nilsson于1965年出版的
《机器学习》一书对这一时期的活动作了总结。
3. 第三阶段从六十年代末到八十年代初。
第三阶段开始的标志是1969年M.Minsky和S.Papert所著的《感知机》一书
的出版。该书对单层神经网络进行了深入分析,并且从数学上证明了这种网
络功能有限,甚至不能解决象"异或"这样的简单逻辑运算问题。同时,他们
还发现有许多模式是不能用单层网络训练的,而多层网络是否可行还很值得
怀疑。
由于M.Minsky在人工智能领域中的巨大威望,他在论著中作出的悲观结论
给当时神经网络沿感知机方向的研究泼了一盆冷水。在《感知机》一书出版
后,美国联邦基金有15年之久没有资助神经网络方面的研究工作,前苏联也
取消了几项有前途的研究计划。
但是,即使在这个低潮期里,仍有一些研究者继续从事神经网络的研究工
作,如美国波士顿大学的S.Grossberg、芬兰赫尔辛基技术大学的T.Kohonen
以及日本东京大学的甘利俊一等人。他们坚持不懈的工作为神经网络研究的
复兴开辟了道路。
4. 第四阶段从八十年代初至今。
1982年,美国加州理工学院的生物物理学家J.J.Hopfield采用全互连型
神经网络模型,利用所定义的计算能量函数,成功地求解了计算复杂度为
NP完全型的旅行商问题(Travelling Salesman Problem,简称TSP)。这
项突破性进展标志着神经网络方面的研究进入了第四阶段,也是蓬勃发展
的阶段。
Hopfield模型提出后,许多研究者力图扩展该模型,使之更接近人脑的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隐单元"的概念,并且
研制出了Boltzmann机。日本的福岛邦房在Rosenblatt的感知机的基础上,
增加隐层单元,构造出了可以实现联想学习的"认知机"。Kohonen应用3000
个阈器件构造神经网络实现了二维网络的联想式学习功能。1986年,
D.Rumelhart和J.McClelland出版了具有轰动性的著作《并行分布处理-认知
微结构的探索》,该书的问世宣告神经网络的研究进入了高潮。
1987年,首届国际神经网络大会在圣地亚哥召开,国际神经网络联合会
(INNS)成立。随后INNS创办了刊物《Journal Neural Networks》,其他
专业杂志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也纷纷
问世。世界上许多著名大学相继宣布成立神经计算研究所并制订有关教育
计划,许多国家也陆续成立了神经网络学会,并召开了多种地区性、国际性
会议,优秀论著、重大成果不断涌现。
今天,在经过多年的准备与探索之后,神经网络的研究工作已进入了决
定性的阶段。日本、美国及西欧各国均制订了有关的研究规划。
日本制订了一个"人类前沿科学计划"。这项计划为期15-20年,仅
初期投资就超过了1万亿日元。在该计划中,神经网络和脑功能的研究占有
重要地位,因为所谓"人类前沿科学"首先指的就是有关人类大脑以及通过
借鉴人脑而研制新一代计算机的科学领域。
在美国,神经网络的研究得到了军方的强有力的支持。美国国防部投资
4亿美元,由国防部高级研究计划局(DAPRA)制订了一个8年研究计划,
并成立了相应的组织和指导委员会。同时,海军研究办公室(ONR)、空军
科研办公室(AFOSR)等也纷纷投入巨额资金进行神经网络的研究。DARPA认
为神经网络"看来是解决机器智能的唯一希望",并认为"这是一项比原子弹
工程更重要的技术"。美国国家科学基金会(NSF)、国家航空航天局(NASA)
等政府机构对神经网络的发展也都非常重视,它们以不同的形式支持了众多
的研究课题。
欧共体也制订了相应的研究计划。在其ESPRIT计划中,就有一个项目是
"神经网络在欧洲工业中的应用",除了英、德两国的原子能机构外,还有多
个欧洲大公司卷进这个研究项目,如英国航天航空公司、德国西门子公司等。
此外,西欧一些国家还有自己的研究计划,如德国从1988年就开始进行一个
叫作"神经信息论"的研究计划。
我国从1986年开始,先后召开了多次非正式的神经网络研讨会。1990年
12月,由中国计算机学会、电子学会、人工智能学会、自动化学会、通信学
会、物理学会、生物物理学会和心理学会等八个学会联合在北京召开了"中
国神经网络首届学术会议",从而开创了我国神经网络研究的新纪元。

9、Hopfield神经网络

Hopfield神经网络(Hopfield Neural Network,简称 HNN),是美国加州理工学院物理学家Hopfield教授1982年提出的一种反馈型神经网络,信号不但能向前,还能向后传递(输出信号又反馈回来变成输入信号。而前面所介绍的BP网络是一种前馈网络,信号只能向前传递)。他在Hopfield神经网络中引入了“能量函数”概念,使网络的运行稳定性的判断有了可靠依据。Hopfield神经网络的权值不是经过反复学习获得的,而是按照一定规则计算出来的,一经确定就不再改变,而Hopfield神经网络的状态(输入、输出信号)会在运行过程中不断更新,网络演变到稳态时各神经元的状态便是问题的解。

1985年,Hopfield和Tank研制了电子线路来模拟Hopfield网络,较好地解决了优化组合问题中著名的TSP(旅行商)问题,找到了最佳解的近似解,为神经网络的复兴建立了不可磨灭的功劳。

对于地球物理反演这种最优化问题,可以很方便地用Hopfield网络来实现。反演的目标函数等于Hopfield网络的“能量函数”,网络的状态(输入、输出信号)就是模型的参数,网络演变到稳态时各神经元的输入输出值便是反演问题的解。

Hopfield神经网络分为离散型和连续型两种网络模型,分别记为DHNN(Discrete Hopfield Neural Network)和CHNN(Continues Hopfield Neural Network)。

在前馈型网络中无论是离散的还是连续的,一般均不考虑输入与输出之间在时间上的滞后性,而只表达两者之间的映射关系。但在连续Hopfield神经网络中,考虑了输出与输入之间的延迟因素,因此需要用微分方程或差分方程来描述网络的动态数学模型。

8.5.4.1 离散Hopfield神经网络

离散Hopfield神经网络的拓扑结构如图8.12所示。这是一种单层全反馈网络,共有n个神经元。图8.12的特点是任意一个神经元的输出xi只能是0或1,均通过连接权wij反馈至所有神经元j作为它的输入xj。也就是说,每个神经元都通过连接权接收所有其他神经元输出反馈的信息,这样每一个神经元的输出都受其他所有神经元输出的控制,从而每个神经元的输出相互制约。每个神经元均设一个阀值Ti,以反映对输入噪声的控制。

图8.12 离散Hopfield神经网络的拓扑结构[8]

8.5.4.1.1 网络的状态

离散Hopfield神经网络任意一个神经元的输出xj称为网络的状态,它只能是0或1。变化规律由下式规定:

xj=f(netj) j=1,2,…,n(8.33)

f( )为转移函数,离散 Hopfield神经网络的转移函数常用符号函数表示:

地球物理反演教程

其中netj为净输入:

地球物理反演教程

对离散Hopfield神经网络,一般有

wij=0,wij=wji (8.36)

这说明神经元没有自反馈,两个神经元的相互控制权值相同。

离散Hopfield神经网络稳定时,每个神经元的状态都不再改变。此时的稳定状态就是网络的输出,记为

地球物理反演教程

8.5.4.1.2 网络的异步工作方式

它是一种串行方式,网络运行时每次只改变一个神经元的状态,其他神经元的状态保持不变。

8.5.4.1.3 网络的同步工作方式

它是一种并行同步工作方式,所有神经元同时调整状态。

8.5.4.1.4 网络的吸引子

网络达到稳定状态时的输出X,称为网络的吸引子。

8.5.4.1.5 网络的能量函数

网络的能量函数定义为

地球物理反演教程

以上是矩阵形式,考虑无自反馈的具体展开形式为

地球物理反演教程

当网络收敛到稳定状态时,有

ΔE(t)=E(t+1)-E(t)=0 (8.40)

或者说:

地球物理反演教程

理论证明了如下两个定理[8]:

定理1.对于DHNN,若按异步方式调整网络状态,且连接权矩阵W为对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。

定理2.对于DHNN,若按同步方式调整网络状态,且连接权矩阵W为非负定对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。

8.5.4.1.6 利用离散Hopfield神经网络进行反演

在地球物理线性反演中,设有如下目标函数:

地球物理反演教程

对比式(8.38)和式(8.42)发现它们在形式上有很多相似之处。王家映的《地球物理反演理论》一书中,直接用式(8.42)和式(8.38)类比,公式显得复杂。本书设立一个新的目标函数ϕ,公式将会变得简洁得多:

地球物理反演教程

再对比式(8.38)和式(8.43),发现它们完全一样,只要设:

X(t)=m,W=GTG,T=GTd (8.44)

注意:式(8.43)的目标函数ϕ的极大值解就是原来目标函数φ极小值的解,它们是同解的。

如果待反演的模型参数是离散的0或1值,那么可以直接应用离散Hopfield神经网络进行反演。但是一般它们都是连续的数值,所以还要将模型参数表示为二进制[1]:

地球物理反演教程

其中:Bij=0或1为二进制数;D和U为整数,取决于模型参数的大小和精度。这样第i个模型参数就用Bij表示为了二进制数。将式(8.45)代入目标函数式(8.43)后再与离散Hopfield神经网络的能量函数进行对比,确立新的等价关系后,就可以进行反演了。

这个新的等价关系式可以参见王家映的《地球物理反演理论》[1]一书。

反演的过程大致如下:

(1)根据模型参数的大小范围和精度确定D和U,将初始输入模型参数变为二进制数。设立一个拟合精度标准,如相对均方差ε,设定一个最大迭代次数N(所有神经元的输出都修改一次称为一次迭代)。

(2)利用数据方程的G矩阵(在一般情况下需用偏导数矩阵获得)计算网络的权值和阀值。

(3)将二进制初始模型参数输入网络并运行网络。

(4)把每次迭代网络输出值变为十进制模型参数,进行正演计算。如果拟合满足精度ε,则停止网络运行并输出反演结果。否则重复(2)~(4)步直到满足精度或达到最多迭代次数N为止。

在一般情况下,地球物理数据方程的G矩阵是无法用解析式写出的,需要用偏导数矩阵获得,它是依赖于输入参数的,因此网络的每次迭代都要重新计算偏导数矩阵。这个计算量是很大的。因此他的反演过程和最小二乘法相似。此外,用Hopfield神经网络进行反演同样有可能陷入局部极值点(吸引子)。因此同样受初始模型的影响,需要尽量让初始模型接近真实模型。

8.5.4.2 连续Hopfield神经网络(CHNN)[8]

1984年,Hopfield把离散Hopfield神经网络发展为连续Hopfield神经网络。但所有神经元都同步工作,各输入输出量为随时间变化的连续的模拟量,这就使得CHNN比DHNN在信息处理的并行性、实时性方面更接近实际的生物神经网络工作机理。因此利用CHNN进行地球物理反演更加方便。

CHNN可以用常系数微分方程来描述,但用模拟电子线路来描述,则更加形象直观,易于理解。图8.13为连续Hopfield神经网络的拓扑结构[8]。

图8.13 连续Hopfield神经网络的拓扑结构[8]

图8.13中每个神经元用一个运算放大器模拟,神经元的输入输出用放大器的输入输出电压表示,连接权用电导表示。每个放大器有一个正向输出和一个反向输出,分别表示兴奋和抑制。每个神经元还有一个用于设置激活电平的外界输入偏置电流作为阀值。

这里由于篇幅关系不再累述。感兴趣的读者可以参考其他文献。

10、BP神经网络中net.iw{1,1} 两个1分别代表什么意思??

第一个1是指网络层数(net.numLayers);

第二个1是指网络输入个数(net.numInputs);

从第j个输入到到第i层的权重的权重矩阵(或null matrix [])位于net.iw {i,j};

神经网络对象IW属性:该属性定义了网络输入和各输入层神经元之间的网络权值,属性值为NxNi维的单元数组,其中,N为网络的层数,Ni为网络的输入个数。

如果net.inputConnect(i,j)为1,即第i层上的各神经元接收网络的第j个输入,那么在单元net.iw {i,j}中将存储它们之间的网络权值矩阵。

该矩阵的行数为第i层神经元的个数(net.layers{i}.size),列数为第j个输入的维数(net.inputs{j}.size)与输入延退拍数(net inputWeights{i,j}.delays)的乘积。

扩展资料:

net.IW{i,j}的作用

通过访问net.IW{i,j},可以获得第i 个网络层来自第j 个输入向量的权值向量值。 所以一般情况下net,iw{1,1}就是输入层和隐含层之间的权值。

net.IW{i,j}各个属性的含义:

(1)、delays:该属性定义了网络输入的各延迟拍数,其属性值是由0或正整数构成的行矢量,各输入层实际接收的是由网络输入的各个延迟构成的混合输入。

(2)、initFcn:该属性定义了输入权值的初始化函数,其属性值为表示权值初始化函数名称的字符串。

(3)、learn:该属性定义了输入权值在训练过程中是否进行调整,其属性值为0或1。

(4)、learnFcn:该属性定义了输入权值的学习函数,其属性值为表示权值学习函数名称的字符串。

神经网络训练怎么看收敛,神经网络收敛的定义是相关推荐

  1. 神经网络训练中断后继续,神经网络训练停止条件

    1.神经网络训练停止的问题~~,我的神经网络训练老是不能停止,请大家帮我测试一下,跪谢!!! 神经网络停止的条件是:1.达到设定的精度要求,2达到最大迭代次数. 调整这两个参数就可以控制训练时间了吧! ...

  2. 神经网络训练的一般步骤,神经网络训练过程详解

    1.想要学习人工神经网络,需要什么样的基础知识? 人工神经网络理论百度网盘下载: 链接:https://pan.baidu.com/s/1Jcg4s2ETCrag2Vo-OA57Og 提取码:rxlc ...

  3. 神经网络训练过程详解,神经网络的训练算法

    神经网络原理及应用 神经网络原理及应用1.什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法. 这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从 ...

  4. 神经网络训练后如何使用,神经网络训练完怎么用

    怎么使用已经训练好的BP神经网络 BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目 ...

  5. python神经网络训练玩游戏_神经网络的优点和缺点,python神经网络实例

    科霍宁SOFM是一个前馈无监督学习网络,它由两层组成:输入层和输出层.输入层,也称匹配层,计算输入模式向量与权重向量的距离,即匹配度:输出层也叫比赛层,诸神按照匹配度比赛,匹配度大(距离小)的神经元确 ...

  6. bp神经网络performance怎么看,BP神经网络用什么软件

    1.除了MATLAB能做BP神经网络,还有其他什么软件能做 除了MATLAB能做BP神经网络,还有其他什么软件能做 理论上编程语言都可以,比如VB,C语言,过程也都是建模.量化.运算及结果输出(图.表 ...

  7. 神经网络训练的一般步骤,神经网络常用训练方法

    如何用Tensorflow 快速搭建神经网络 在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络. 在训练神经网络的时候,使用带指数衰减的学习率设置.使用 ...

  8. 神经网络训练的一般步骤,神经网络是怎么训练的

    1.什么神经网络训练学习?学习有哪几种方式? 神经网络的学习,也就是训练过程,指的是输入层神经元接收输入信息,传递给中间层神经元,最后传递到输出层神经元,由输出层输出信息处理结果的过程. 1.有监督学 ...

  9. bp神经网络训练函数选择,BP神经网络训练过程

    BP神经网络的训练集需要大样本吗?一般样本个数为多少? BP神经网络的训练集需要大样本吗?一般样本个数为多少? BP神经网络样本数有什么影响学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指 ...

最新文章

  1. 中国各地高考难度地图:上大学最难的省份是哪里!?
  2. (九)javaScript的基本使用
  3. PHP 字符串替换 substr_replace 与 str_replace 函数
  4. P4593-[TJOI2018]教科书般的亵渎【拉格朗日差值】
  5. Oracle 关于WKT构造SDO_GEOMETRY的问题。
  6. Warning: lio_listio returned EAGAIN Performance degradation may be seen
  7. 基于matlab的2ask频带传输系统仿真与性能分析,基于MATLAB的2ASK频带传输系统仿真与性能分析汇总...
  8. Vue自定义指令—— 完美解决H5页面不同尺寸屏幕的适配问题
  9. 抓包工具Fiddler的使用说明
  10. .Net Core Linux centos7行—.net core json 配置文件
  11. 硬件超车无法掩盖生态缺失,软实力构建任重而道远 | 中科曙光高性能计算专访...
  12. STAR:转录组数据比对工具简介
  13. C# 上位机界面添加扫码枪输入
  14. 【win10】设置电脑固定IP,解除固定IP
  15. Newoupui-pak配置失败怎么处理?
  16. Android平台App进程优先级
  17. 亚马逊,速卖通,国际站卖家在做测评时如何将风险降到最低呢?
  18. 服务器固态硬盘的优缺点是什么
  19. 《关于推动港澳青年创新创业基地高质量发展实施意见》的通知
  20. [从头读历史] 第279节 诗经 豳风

热门文章

  1. idea打开后不显示界面,win+D快捷键解决问题
  2. 中国武术职业联赛(WMA)
  3. 在职研究生计算机专业好考么,湖南在职研究生计算机专业好考不
  4. 一分钟完全关闭Antimalware Service Executable(windows defender)任务管理器程序
  5. 比光刻机还重要的IP核是什么?
  6. SAP权限管理,我的理解
  7. 【Markdown语法】字体颜色大小及文字底色设置
  8. kotlin 原生字符串输出三个引号
  9. 在java语言中 ()方法是不可以继承的_Java 语言中,构造方法是不可以继承的。( )_学小易找答案...
  10. 做人如水 做事如山