一、病人分类的例子

让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。

某个医院早上收了六个门诊病人,如下表。

  症状  职业   疾病

  打喷嚏 护士   感冒 
  打喷嚏 农夫   过敏 
  头痛  建筑工人 脑震荡 
  头痛  建筑工人 感冒 
  打喷嚏 教师   感冒 
  头痛  教师   脑震荡

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

 P(A|B) = P(B|A) P(A) / P(B)

可得

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏x建筑工人|感冒) x P(感冒) 
    / P(打喷嚏x建筑工人)

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) 
    / P(打喷嚏) x P(建筑工人)

这是可以计算的。

  P(感冒|打喷嚏x建筑工人) 
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 
    = 0.66

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

二、朴素贝叶斯分类器的公式

假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:

 P(C|F1F2...Fn) 
  = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求

 P(F1F2...Fn|C)P(C)

的最大值。

朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此

 P(F1F2...Fn|C)P(C) 
  = P(F1|C)P(F2|C) ... P(Fn|C)P(C)

上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。

虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。

下面再通过两个例子,来看如何使用朴素贝叶斯分类器。

三、账号分类的例子

本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》。

根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。

  C0 = 0.89

  C1 = 0.11

接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:

    F1: 日志数量/注册天数 
    F2: 好友数量/注册天数 
    F3: 是否使用真实头像(真实头像为1,非真实头像为0)

    F1 = 0.1 
    F2 = 0.2 
    F3 = 0

请问该账号是真实账号还是虚假账号?

方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。

    P(F1|C)P(F2|C)P(F3|C)P(C)

虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。

一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。

根据统计资料,可得:

  P(F1|C0) = 0.5, P(F1|C1) = 0.1 
  P(F2|C0) = 0.7, P(F2|C1) = 0.2 
  P(F3|C0) = 0.2, P(F3|C1) = 0.9

因此,

  P(F1|C0) P(F2|C0) P(F3|C0) P(C0) 
    = 0.5 x 0.7 x 0.2 x 0.89 
    = 0.0623

  P(F1|C1) P(F2|C1) P(F3|C1) P(C1) 
    = 0.1 x 0.2 x 0.9 x 0.11 
    = 0.00198

可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。

四、性别分类的例子

本例摘自维基百科,关于处理连续变量的另一种方法。

下面是一组人类身体特征的统计资料。

  性别  身高(英尺) 体重(磅)  脚掌(英寸)

  男    6       180     12 
  男    5.92     190     11 
  男    5.58     170     12 
  男    5.92     165     10 
  女    5       100     6 
  女    5.5      150     8 
  女    5.42     130     7 
  女    5.75     150     9

已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

根据朴素贝叶斯分类器,计算下面这个式子的值。

P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)

这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。

有了这些数据以后,就可以计算性别的分类了。

  P(身高=6|男) x P(体重=130|男) x P(脚掌=8|男) x P(男) 
    = 6.1984 x e-9

  P(身高=6|女) x P(体重=130|女) x P(脚掌=8|女) x P(女) 
    = 5.3778 x e-4

可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。

(完)

原文地址:http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html

朴素贝叶斯分类器的例子相关推荐

  1. 朴素贝叶斯分类器简介及C++实现(性别分类)

    贝叶斯分类器是一种基于贝叶斯定理的简单概率分类器. 在机器学习中,朴素贝叶斯分类器是一系列以假设特征之间强(朴素)独立下运用贝叶斯定理为基础的简单概率分类器.朴素贝叶斯是文本分类的一种热门(基准)方法 ...

  2. 朴素贝叶斯分类器的应用-转载加我的理解注释

    2019独角兽企业重金招聘Python工程师标准>>> 生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifie ...

  3. (数据科学学习手札30)朴素贝叶斯分类器的原理详解Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  4. 机器学习 —— 基础整理(二)朴素贝叶斯分类器;文本分类的方法杂谈

          上一篇博客复习了贝叶斯决策论,以及生成式模型的参数方法.本篇就给出一个具体的例子:朴素贝叶斯分类器应用于文本分类.后面简单谈了一下文本分类的方法. (五)朴素贝叶斯分类器(NaïveBay ...

  5. 基于朴素贝叶斯分类器的西瓜数据集 2.0 预测分类_第十章:利用Python实现朴素贝叶斯模型

    免责声明:本文是通过网络收集并结合自身学习等途径合法获取,仅作为学习交流使用,其版权归出版社或者原创作者所有,并不对涉及的版权问题负责.若原创作者或者出版社认为侵权,请联系及时联系,我将立即删除文章, ...

  6. 用Python开始机器学习(6:朴素贝叶斯分类器)

    朴素贝叶斯分类器是一个以贝叶斯定理为基础,广泛应用于情感分类领域的优美分类器.本文我们尝试使用该分类器来解决上一篇文章中影评态度分类. 1.贝叶斯定理 假设对于某个数据集,随机变量C表示样本为C类的概 ...

  7. 贝叶斯公式/朴素贝叶斯分类器及python自实现

    本文从贝叶斯与频率概率的对比入手理解贝叶斯决策的思维方式.通过两个实例理解贝叶斯的思想与流程,然后梳理了朴素贝叶斯分类器的算法流程,最后从零开始实现了朴素分类器的算法. 文章目录 1.起源.提出与贝叶 ...

  8. 机器学习:伯努利朴素贝叶斯分类器(原理+python实现)

    伯努利朴素贝叶斯分类器主要用于文本分类,下面我们以一个具体的例子,来讲述下伯努利朴素贝叶斯的原理和实现逻辑. 具体例子: 已知我们有八个句子以及每个句子对应的类别,即中性或侮辱性.那么再给出一个句子, ...

  9. 机器学习算法——贝叶斯分类器3(朴素贝叶斯分类器)

    基于贝叶斯公式来估计后验概率P(c|x)的主要困难在于:类条件概率P(x|c)是所有属性上的联合概率,难以从有限的训练样本直接估计而得. 为避开这个障碍,朴素贝叶斯分类器(Naive Bayes cl ...

最新文章

  1. 信息化道路上,这两家龙头企业做了什么
  2. /GS 编译选项,_security_cookie,软件强制DEP
  3. html面包屑菜鸟,css content属性与before及after伪元素配合使用价值发挥到最大
  4. 免费公开课 | AI对抗攻防系列专题,今晚7点第一讲
  5. 机器学习笔记(七):神经网络:表示
  6. SQL Server 2008修改数据库为多用户模式
  7. android显示通知栏Notification以及自定义Notification的View
  8. [转]五个值得关注的图形数据库
  9. 控制台调用天气API例子
  10. 18 网络编程-TCP/IP各层介绍(5层模型讲解)
  11. 大整数算法[10] Comba乘法(实现)
  12. Silverlight .xap文件详解
  13. 用java开发pc软件
  14. 华为荣耀3x畅玩版解锁
  15. Hadoop3.2.1 【 HDFS 】源码分析 :BlockManager解析 [二]
  16. php是世界上最好的语言 ctf+代码审计+加密函数绕过
  17. STM32读取MPU6050陀螺仪
  18. 国产全志T3+Logos FPGA开发板(4核ARM Cortex-A7)规格书
  19. php disable hugepage,禁用Transparent Huge Pages
  20. matlab--积分计算

热门文章

  1. linux cpufreq framework(4)_cpufreq governor
  2. 中兴盒子1.1-T、1.2、2.1、2.1-A、2.1-B、2.1-M、2.1U、CM101H通刷线刷语音_刷机固件
  3. 终端下 复制粘贴快捷键
  4. 你用过“趣步”吗?听说最近区块链韭菜们都在跑步!
  5. 深度学习中的隐私保护技术综述
  6. wish平台入驻前需要准备什么?
  7. WhatsApp营销有什么好处?为什么需要SendWS拓客工具帮助WhatsApp营销和云控?
  8. char* a = abc 和 char a[] = abc 之间的区别
  9. Good Good Study 之 Mob 秒验 实测评
  10. idea中提示语的显示和隐藏(port:8088)