本文我们接着对多目标追踪(MOT)领域常见的模型和算法进行学习,这次的主角是JDE,JDE可不是一个模型的名字,而是一类追踪算法的总称,全称叫做

Jointly learns the Detector and Embedding model (JDE)

什么意思呢?我们之前讨论的一些多目标追踪模型,比如SORT和DeepSORT,都是2015-2018年常见的MOT范式,也就是tracking by detection 。

该类范式因为通俗易懂,且表现出了不俗的追踪精度,在2015年到2018年,一度成为MOT的主流范式。该范式首先通过检测器(detector)检测出画面中物体所在的检测框,然后根据物体检测框移动的规律(运动特征)和检测框中物体的外观特征(通常通过一个ReID网络抽取一个低维的向量,叫做embedding向量)来进行前后帧同一物体的匹配,从而实现多目标追踪。

该类范式将MOT分为了两步,即

  • 物体检测
  • 特征提取与物体关联

该类方法检测与特征提取是分开的,所以又被称为SDE

Separate Detection and Embedding (SDE)

SDE存在的最大缺点就是速度慢,因为将物体检测和(外观)特征提取分开,检测速度自然就下去了。

那么作者考虑到这点不足,提出了JDE范式。论文和代码链接如下:

论文:Towards Real-Time Multi-Object Tracking

代码:Zhongdao/Towards-Realtime-MOT

1 JDE产生背景

其实,作者有对比了前面方法:

1)、SDE(Separate Detection and Embedding)就是两阶段法。检测器和Reid模块是独立开来的,先检测后识别(感觉思想和Fast RCNN很像),这些方法需要分为两部分操作,两部分不相互干扰,精度高,但是耗时长。
2)、作者这里的two-stage实际上应该也是一种端到端的方法,只是不是利用检测的最后的结果,而是利用两阶段检测法中FPN生成的框来做Embedding,这样做可以贡献部分特征,减少计算量。但是二阶段法不来就不是很快,所以整体速度依然达不到实时。

2 JDE的网络结构和损失函数

既然作者提到该方法是基于One-stage检测器学习到物体的embedding的(代码中采用的是经典的YOLO V3模型)。那么JDE范式就应该在检测器的输出(head),多输出一个分支用来学习物体的embedding的。

果不其然,作者就是采用了这种思路。原论文中给出结构图如下

这个结构图勾勒了作者大致的想法,在Prediction head中多出来了一个分支用于输出embedding。然后使用一个**多任务学习(multi-task learning)**的思路设置损失函数。看的时候觉得如此简单,但是深思了下,发现问题没有这么简单。

我根据源码自己又画了一个图:

第一个问题就是embedding要怎么学出来?

我们知道,理想情况下同一物体在不同的帧中,被同一跟踪标签锁定(即拥有同一track ID)。我们知道的信息就只有他们的标签索引(同一物体的track ID一致,不同物体的track ID不一样)。

那么网络在训练的过程中,应该需要对embedding进行转化,转化为足够强的语义信息,也就是这个embedding可以轻松的区分检测出来的目标属于哪个track ID的物体,那么这种就需要借鉴物体分类的思路了(将每个track ID当作一个类别),所以作者引入了全连接层将embedding信息转化为track ID分类信息。

第二个问题就是这个全连结层的输出节点到底是多少?

因为刚才我们提到,要将每个track ID当作一个类别,但是这个track ID的数量十分庞大,甚至不可计数。这个输出节点应该如何设置呢?看了一圈代码,代码中设置了14455个输出节点,设置依据为训练集的总的Track ID数量。

那么实际上作者的结构图是进行了省略的,我们不妨手动补全

注意:在Test的时候实际上是没有Embedding到14455的映射的,prediction head几乎没起什么作用

这样的话就没什么大的疑问了。有关YOLO V3的结构,熟悉目标检测的都不会陌生,我们这里忽略FPN网络的结构定义,直接看predicition head的代码部分,确定上面的分析是合理的。

该predicition head的代码定义在model.py文件下的 YOLOLayer类中。定义如下:

class YOLOLayer(nn.Module):def __init__(self, anchors, nC, nID, nE, img_size, yolo_layer):super(YOLOLayer, self).__init__()self.layer = yolo_layernA = len(anchors)self.anchors = torch.FloatTensor(anchors)self.nA = nA  # number of anchors (4)print('nA',nA)self.nC = nC  # number of classes (1)print('nC', nC)self.nID = nID # number of identities, 14455print('nID', nID)self.img_size = 0self.emb_dim = nE # 512print('nE', nE)self.shift = [1, 3, 5]self.SmoothL1Loss  = nn.SmoothL1Loss() #  for bounding box regressionself.SoftmaxLoss = nn.CrossEntropyLoss(ignore_index=-1) # foreground and background classificationself.CrossEntropyLoss = nn.CrossEntropyLoss()self.IDLoss = nn.CrossEntropyLoss(ignore_index=-1) # loss of embeddingself.s_c = nn.Parameter(-4.15*torch.ones(1))  # -4.15self.s_r = nn.Parameter(-4.85*torch.ones(1))  # -4.85self.s_id = nn.Parameter(-2.3*torch.ones(1))  # -2.3self.emb_scale = math.sqrt(2) * math.log(self.nID-1) if self.nID>1 else 1

作者简单定义了一些参数和损失函数类型。我已经将一些参数的设定值标注在后面,便于大家理解。作者定义了四个损失函数,但是只用到了三个,分别为

  • self.SmoothL1Loss 用于检测框的回归
  • self.SoftmaxLoss 用于前景和背景分类
  • self.IDLoss 用于计算embedding的损失

当然了,作者在论文中提到,JDE是一个多任务的学习,所以在计算损失函数的时候,需要采用任务独立不确定性(task-independent uncertainty)的自动学习方案进行以上三个损失函数的求和,有关参数在上述代码中已经定义,分别为

  • self.s_c
  • self.s_r
  • self.s_id

这在上图中也有体现。该部分的核心代码如下

    def forward(self, p_cat,  img_size, targets=None, classifier=None, test_emb=False):p, p_emb = p_cat[:, :24, ...], p_cat[:, 24:, ...]nB, nGh, nGw = p.shape[0], p.shape[-2], p.shape[-1]if self.img_size != img_size:create_grids(self, img_size, nGh, nGw)if p.is_cuda:self.grid_xy = self.grid_xy.cuda()self.anchor_wh = self.anchor_wh.cuda()p = p.view(nB, self.nA, self.nC + 5, nGh, nGw).permute(0, 1, 3, 4, 2).contiguous()  # predictionp_emb = p_emb.permute(0,2,3,1).contiguous()p_box = p[..., :4]p_conf = p[..., 4:6].permute(0, 4, 1, 2, 3)  # Conf# Trainingif targets is not None:if test_emb:tconf, tbox, tids = build_targets_max(targets, self.anchor_vec.cuda(), self.nA, self.nC, nGh, nGw)else:tconf, tbox, tids = build_targets_thres(targets, self.anchor_vec.cuda(), self.nA, self.nC, nGh, nGw)tconf, tbox, tids = tconf.cuda(), tbox.cuda(), tids.cuda()mask = tconf > 0# Compute lossesnT = sum([len(x) for x in targets])  # number of targetsnM = mask.sum().float()  # number of anchors (assigned to targets)nP = torch.ones_like(mask).sum().float()if nM > 0:lbox = self.SmoothL1Loss(p_box[mask], tbox[mask])else:FT = torch.cuda.FloatTensor if p_conf.is_cuda else torch.FloatTensorlbox, lconf =  FT([0]), FT([0])lconf =  self.SoftmaxLoss(p_conf, tconf)lid = torch.Tensor(1).fill_(0).squeeze().cuda()emb_mask,_ = mask.max(1)# For convenience we use max(1) to decide the id, TODO: more reseanable strategytids,_ = tids.max(1) tids = tids[emb_mask]embedding = p_emb[emb_mask].contiguous()embedding = self.emb_scale * F.normalize(embedding)nI = emb_mask.sum().float()if  test_emb:if np.prod(embedding.shape)==0  or np.prod(tids.shape) == 0:return torch.zeros(0, self.emb_dim+1).cuda()emb_and_gt = torch.cat([embedding, tids.float()], dim=1)return emb_and_gtif len(embedding) > 1:logits = classifier(embedding).contiguous()lid =  self.IDLoss(logits, tids.squeeze())# Sum loss componentsloss = torch.exp(-self.s_r)*lbox + torch.exp(-self.s_c)*lconf + torch.exp(-self.s_id)*lid + \(self.s_r + self.s_c + self.s_id)loss *= 0.5return loss, loss.item(), lbox.item(), lconf.item(), lid.item(), nTelse:p_conf = torch.softmax(p_conf, dim=1)[:,1,...].unsqueeze(-1)p_emb = F.normalize(p_emb.unsqueeze(1).repeat(1,self.nA,1,1,1).contiguous(), dim=-1)#p_emb_up = F.normalize(shift_tensor_vertically(p_emb, -self.shift[self.layer]), dim=-1)#p_emb_down = F.normalize(shift_tensor_vertically(p_emb, self.shift[self.layer]), dim=-1)p_cls = torch.zeros(nB,self.nA,nGh,nGw,1).cuda()               # Tempp = torch.cat([p_box, p_conf, p_cls, p_emb], dim=-1)#p = torch.cat([p_box, p_conf, p_cls, p_emb, p_emb_up, p_emb_down], dim=-1)p[..., :4] = decode_delta_map(p[..., :4], self.anchor_vec.to(p))p[..., :4] *= self.stridereturn p.view(nB, -1, p.shape[-1])

稍微有点冗长,我们来一一分析。

(1)前向预测信息的划分

首先作者将输出特征图划分为三部分,分别为

  • 包含embedding信息的p_emb
  • 包含检测框位置信息的p_box
  • 包含前景背景分类置信度的p_conf
        p_emb = p_emb.permute(0,2,3,1).contiguous()p_box = p[..., :4]p_conf = p[..., 4:6].permute(0, 4, 1, 2, 3)  # Conf

这对应上图中的

(2)监督信息的划分

其次,作者从真实的标签信息中抽取各自的监督信息,分别为

        # Trainingif targets is not None:if test_emb:tconf, tbox, tids = build_targets_max(targets, self.anchor_vec.cuda(), self.nA, self.nC, nGh, nGw)else:tconf, tbox, tids = build_targets_thres(targets, self.anchor_vec.cuda(), self.nA, self.nC, nGh, nGw)tconf, tbox, tids = tconf.cuda(), tbox.cuda(), tids.cuda()mask = tconf > 0

因为我们知道,想要高效地进行损失函数求解,最好将监督信息对应到网络输出格式。其中tconf=1代表的是anchor中与GroundTruth目标物体最接近的框。注意在Test的时候,是需要对网络输出的框进行NMS(非极大值抑制)来避免重复框的。

(3)检测框回归损失和前景背景分类损失

接着作者计算检测框回归损失和前景背景分类损失。

            # Compute lossesnT = sum([len(x) for x in targets])  # number of targetsnM = mask.sum().float()  # number of anchors (assigned to targets)nP = torch.ones_like(mask).sum().float()if nM > 0:lbox = self.SmoothL1Loss(p_box[mask], tbox[mask])else:FT = torch.cuda.FloatTensor if p_conf.is_cuda else torch.FloatTensorlbox, lconf =  FT([0]), FT([0])lconf =  self.SoftmaxLoss(p_conf, tconf)lid = torch.Tensor(1).fill_(0).squeeze().cuda()emb_mask,_ = mask.max(1)

这里值得注意的是mask的设置。作者将被分配为目标(targets)的anchor设置mask,那么只考虑被分配为targets的anchor对应位置上的值来计算损失函数。

(4)embedding损失的计算

接着作者计算embedding损失,值得注意的是,在该过程中作者采用了前面提到的全连结层来获得embedding的高级语义信息(track ID)。然后使用常见用于分类任务的交叉熵损失函数。

具体代码如下:

            # For convenience we use max(1) to decide the id, TODO: more reseanable strategytids,_ = tids.max(1) tids = tids[emb_mask]embedding = p_emb[emb_mask].contiguous()embedding = self.emb_scale * F.normalize(embedding)nI = emb_mask.sum().float()if  test_emb:if np.prod(embedding.shape)==0  or np.prod(tids.shape) == 0:return torch.zeros(0, self.emb_dim+1).cuda()emb_and_gt = torch.cat([embedding, tids.float()], dim=1)return emb_and_gtif len(embedding) > 1:logits = classifier(embedding).contiguous()lid =  self.IDLoss(logits, tids.squeeze())

(5)总损失函数

最后,作者按照公式

对上面的三个损失进行求和。实现代码如下

            loss = torch.exp(-self.s_r)*lbox + torch.exp(-self.s_c)*lconf + torch.exp(-self.s_id)*lid + \(self.s_r + self.s_c + self.s_id)loss *= 0.5

至此,有关predicition head的部分就讲解结束了。JDE的主体部分就介绍完了,其他细节,大家可以看一下原论文和代码,进行探索。

3 匹配

1.如何匹配

匹配是根据prediction head输出的embedding来进行匹配的。

2.变量说明

Tracks:表示一个被记录的物体(instance,同一个人)

Detections:表示当前帧中检测的是前景(比如人)的物体(会有对应的边框坐标和embedding)

不同状态的Tracks会有四个序列来分别进行存储:

  1. Activated:表示当前帧中出现某个Tracks记录的人,则Tracks状态变为Activated

  2. Refined:处于Lost状态的Tracks记录的人出现在当前帧

  3. Lost:处于Lost状态的Tracks,但是并没有被删除(Remove)

  4. Removed(删除):剔除序列的Tracks

3.匹配细则

当下一帧来到时,如何在处于Activated状态中的Tracks找到与其匹配的detection:

  1. 对处于Activated的Tracks,使用卡尔曼滤波预测物体当前帧的位置。

  2. 通过余弦相似性来计算Activated Tracks与Detections之间的appearance affinity matrix AE;通过马氏距离来计算Activated Tracks与Detections之间的motion affinity matrix AM。综合AE和AM得到最终的Cost Matrix,通过使用匈牙利算法来根据cost matrix进行Track与detection间的最佳匹配。

  3. 对于匹配到的且处于Activated 状态的Tracks,状态依旧处于Activated;对于新的detections,则新建一个处于Activated的Track;对于处于Lost状态的Tracks将重新处于Refined状态。

  4. 对于匹配失败的Track,则采用IOU距离度量指标重新进行匹配。

  5. 在IOU距离匹配下:匹配成功的Tracks处于Activated状态,失败的处于Lost状态。

关于匹配的详细代码:

class JDETracker(object):def __init__(self, opt, frame_rate=30):self.opt = optself.model = Darknet(opt.cfg, nID=14455)# load_darknet_weights(self.model, opt.weights)self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'], strict=False)self.model.cuda().eval()self.tracked_stracks = []  # type: list[STrack]self.lost_stracks = []  # type: list[STrack]self.removed_stracks = []  # type: list[STrack]self.frame_id = 0self.det_thresh = opt.conf_thresself.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)self.max_time_lost = self.buffer_sizeself.kalman_filter = KalmanFilter()def update(self, im_blob, img0):"""Processes the image frame and finds bounding box(detections).Associates the detection with corresponding tracklets and also handles lost, removed, refound and active trackletsParameters----------im_blob : torch.float32Tensor of shape depending upon the size of image. By default, shape of this tensor is [1, 3, 608, 1088]img0 : ndarrayndarray of shape depending on the input image sequence. By default, shape is [608, 1080, 3]Returns-------output_stracks : list of Strack(instances)The list contains information regarding the online_tracklets for the recieved image tensor."""# 定义不同的序列存放不同的frameself.frame_id += 1activated_starcks = []      # for storing active tracks, for the current framerefind_stracks = []         # Lost Tracks whose detections are obtained in the current framelost_stracks = []           # The tracks which are not obtained in the current frame but are not removed.(Lost for some time lesser than the threshold for removing)removed_stracks = []t1 = time.time()''' Step 1: Network forward, get detections & embeddings'''with torch.no_grad():pred = self.model(im_blob)# pred is tensor of all the proposals (default number of proposals: 54264). Proposals have information associated with the bounding box and embeddingspred = pred[pred[:, :, 4] > self.opt.conf_thres]# pred now has lesser number of proposals. Proposals rejected on basis of object confidence scoreif len(pred) > 0:dets = non_max_suppression(pred.unsqueeze(0), self.opt.conf_thres, self.opt.nms_thres)[0].cpu()# Final proposals are obtained in dets. Information of bounding box and embeddings also included# Next step changes the detection scalesscale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()'''Detections is list of (x1, y1, x2, y2, object_conf, class_score, class_pred)'''# class_pred is the embeddings.detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f.numpy(), 30) for(tlbrs, f) in zip(dets[:, :5], dets[:, 6:])]else:detections = []t2 = time.time()# print('Forward: {} s'.format(t2-t1))''' Add newly detected tracklets to tracked_stracks'''unconfirmed = []tracked_stracks = []  # type: list[STrack]for track in self.tracked_stracks:if not track.is_activated:# previous tracks which are not active in the current frame are added in unconfirmed listunconfirmed.append(track)# print("Should not be here, in unconfirmed")else:# Active tracks are added to the local list 'tracked_stracks'tracked_stracks.append(track)''' Step 2: First association, with embedding'''# Combining currently tracked_stracks and lost_stracksstrack_pool = joint_stracks(tracked_stracks, self.lost_stracks)# Predict the current location with KF 运用卡尔曼滤波进行motion state的更新STrack.multi_predict(strack_pool, self.kalman_filter)# appearance affinity matrixdists = matching.embedding_distance(strack_pool, detections)# dists = matching.gate_cost_matrix(self.kalman_filter, dists, strack_pool, detections)# motion affinity matrixdists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)# The dists is the list of distances of the detection with the tracks in strack_pool# 匈牙利算法做匹配matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.7)# The matches is the array for corresponding matches of the detection with the corresponding strack_poolfor itracked, idet in matches:# itracked is the id of the track and idet is the detectiontrack = strack_pool[itracked]det = detections[idet]if track.state == TrackState.Tracked:# If the track is active, add the detection to the tracktrack.update(detections[idet], self.frame_id)activated_starcks.append(track)else:# We have obtained a detection from a track which is not active, hence put the track in refind_stracks listtrack.re_activate(det, self.frame_id, new_id=False)refind_stracks.append(track)# None of the steps below happen if there are no undetected tracks.''' Step 3: Second association, with IOU'''detections = [detections[i] for i in u_detection]# detections is now a list of the unmatched detectionsr_tracked_stracks = [] # This is container for stracks which were tracked till the# previous frame but no detection was found for it in the current framefor i in u_track:if strack_pool[i].state == TrackState.Tracked:r_tracked_stracks.append(strack_pool[i])dists = matching.iou_distance(r_tracked_stracks, detections)matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)# matches is the list of detections which matched with corresponding tracks by IOU distance methodfor itracked, idet in matches:track = r_tracked_stracks[itracked]det = detections[idet]if track.state == TrackState.Tracked:track.update(det, self.frame_id)activated_starcks.append(track)else:track.re_activate(det, self.frame_id, new_id=False)refind_stracks.append(track)# Same process done for some unmatched detections, but now considering IOU_distance as measurefor it in u_track:track = r_tracked_stracks[it]if not track.state == TrackState.Lost:track.mark_lost()lost_stracks.append(track)# If no detections are obtained for tracks (u_track), the tracks are added to lost_tracks list and are marked lost'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''detections = [detections[i] for i in u_detection]dists = matching.iou_distance(unconfirmed, detections)matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)for itracked, idet in matches:unconfirmed[itracked].update(detections[idet], self.frame_id)activated_starcks.append(unconfirmed[itracked])# The tracks which are yet not matchedfor it in u_unconfirmed:track = unconfirmed[it]track.mark_removed()removed_stracks.append(track)# after all these confirmation steps, if a new detection is found, it is initialized for a new track""" Step 4: Init new stracks"""for inew in u_detection:track = detections[inew]if track.score < self.det_thresh:continuetrack.activate(self.kalman_filter, self.frame_id)activated_starcks.append(track)""" Step 5: Update state"""# If the tracks are lost for more frames than the threshold number, the tracks are removed.for track in self.lost_stracks:if self.frame_id - track.end_frame > self.max_time_lost:track.mark_removed()removed_stracks.append(track)# print('Remained match {} s'.format(t4-t3))# Update the self.tracked_stracks and self.lost_stracks using the updates in this step.self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)# self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost]  # type: list[STrack]self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)self.lost_stracks.extend(lost_stracks)self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)self.removed_stracks.extend(removed_stracks)self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)# get scores of lost tracksoutput_stracks = [track for track in self.tracked_stracks if track.is_activated]logger.debug('===========Frame {}=========='.format(self.frame_id))logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))# print('Final {} s'.format(t5-t4))return output_stracks

上述代码中的step与匹配细则相对应。

4 总结

tracking by detection是非常常见的MOT范式,但是目前MOT领域为了平衡追踪速度和精度,慢慢放弃了这种范式,转而投入将检测与embedding匹配进行结合的范式研究中。本文介绍的JDE就是一个网络同时输出图像画面中的检测框位置和检测框内物体的embedding,从而加速MOT的速度。

但是值得注意的是,JDE只是同时输出了检测框和embedding信息。后面还是要通过卡尔曼滤波匈牙利算法进行目标的匹配。总的来说,还是分为检测和匹配双阶段。

5 参考

参考代码:

[1]https://github.com/Zhongdao/Towards-Realtime-MOT
[2]https://zhuanlan.zhihu.com/p/243290960

Towards Real-Time Multi-Object Tracking(JDE)相关推荐

  1. Object Track(十):经典论文JDE速读

    写在前面: 一般地,在目标跟踪任务中我们将two-step形式的方法视为一个数据关联问题,将one-shot形式的方法视为一个多任务学习问题. two-step形式的方法又可以细分为检测与嵌入完全分离 ...

  2. PULT:Progressive Unsupervised Learning for Visual Object Tracking(用于视觉目标跟踪的渐进式无监督学习)

    Progressive Unsupervised Learning for Visual Object Tracking(用于视觉目标跟踪的渐进式无监督学习 ) 因为是无监督学习,所以需要对样本数据充 ...

  3. Fully-Convolutional Siamese Networks for Object Tracking(SiamFC 算法学习)

    Fully-Convolutional Siamese Networks for Object Tracking(SiamFC 算法学习) 1.摘要 传统方法存在的问题:仅在线方法固有地限制了他们可以 ...

  4. Paper reading:A simple baseline for one-shot multi-object tracking(一)

    A simple baseline for one-shot multi-object tracking(一) 1. 背景介绍 作者来自华中科技大和微软亚亚研院,之前LZ是看过一点多目标跟踪的算法的, ...

  5. 目标检测论文阅读:Cascade R-CNN: Delving into High Quality Object Detection(CVPR2018)

    Cascade R-CNN: Delving into High Quality Object Detection(CVPR2018) 论文链接:https://arxiv.org/abs/1712. ...

  6. Receptive Field Block Net for Accurate and Fast Object Detection(RFB)

    Receptive Field Block Net for Accurate and Fast Object Detection(RFB) paper code Abstract 受人类视觉系统感受野 ...

  7. 论文阅读:Semantic Aware Attention Based Deep Object Co-segmentation(ACCV2018)

    协同分割论文:Semantic Aware Attention Based Deep Object Co-segmentation(ACCV2018) 论文原文     code 目录 1.简介 2. ...

  8. Mutual Supervision for Dense Object Detection(ICCV2021)阅读笔记

    同上一篇一样,这边摸鱼笔记也是关于分类和回归分支的权重设计. 论文来源于2021ICCV,论文链接:https://openaccess.thecvf.com/content/ICCV2021/pap ...

  9. Object Detection (2)Faster RCNN详解

    目录 Object Detection (1)VOC2007数据集制作 Object Detection (2)Faster RCNN详解 Object Detection (3)Faster RCN ...

  10. 目标检测论文阅读:Multi-scale Location-aware Kernel Representation for Object Detection(CVPR2018)

    Multi-scale Location-aware Kernel Representation for Object Detection 论文链接:https://arxiv.org/abs/180 ...

最新文章

  1. 警告:push.default未设置;它的隐含值在Git 2.0中发生了变化
  2. kali linux 渗透测试 01 kali介绍
  3. 如何查看jinja2模板的上級_如何使用Python的Flask和谷歌app Engine来构建一个web app...
  4. 非关系型数据库(非RDBMS)介绍
  5. Java面试——RabbitMQ系列总结
  6. 判断系统大小端方法分析与总结
  7. java导出excel_java按需导出Excel并自动合同单元格
  8. 唠唠 RDS 那些事 —— RDS on Windows Server 2016 第二篇
  9. H3C 静态路由的配置
  10. Spotfire中文教程
  11. 苹果手机换电池对手机有影响吗_电池寿命真的影响手机性能~iPhone手机更换电池后性能对比...
  12. 彩信猫 发送彩信失败_在彩信上为人类摆姿势
  13. PS学习笔记------运用脚本及自动化批量处理
  14. php大写转为小写,PHP 实现人民币小写转换成大写的方法及大小写转换函数
  15. 视觉显著性 matlab,转载图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)...
  16. 一文读懂堡垒机对企业信息安全起到的重要作用
  17. 怎么在php中加入换行符,如何在PHP中创建换行符?
  18. Excel高效插入空行,2秒删除表格所有空行,实在太效率了
  19. DVWA之命令注入漏洞(Command injection)
  20. 外部 DTD: 无法读取外部 DTD ‘mybatis-generator-config_1_0.dtd‘, 因为 accessExternalDTD 属性设置的限制导致不允许

热门文章

  1. 微信小程序 转发功能实例讲解
  2. pad怎么远程服务器,iphone和ipad如何远程控制局域网电脑
  3. 大数据行业发展前景及岗位方向如何?
  4. 网络编程(含 UrlConnection 发送 HTTP 请求下载文件)
  5. 【手写源码-设计模式7】-桥接模式-基于苹果小米手机刷机场景
  6. 【数据库记录】数据库三大范式和BCNF范式
  7. PDF+word生成pdf+嵌入所有字体
  8. 台式计算机组装攻略,台式机如何组装 电脑组装详细步骤【图文】
  9. python中class什么意思_python class是什么
  10. 量化研究丨多空本来就不一样,醒醒吧