Elasticsearch是一个很火的分布式搜索系统,提供了非常强大而且易用的查询和分析能力,包括全文索引、模糊查询、多条件组合查询、地理位置查询等等,而且具有一定的分析聚合能力。因为其查询场景非常丰富,所以如果泛泛的分析其查询性能是一个非常复杂的事情,而且除了场景之外,还有很多影响因素,包括机型、参数配置、集群规模等等。本文主要是针对几种主要的查询场景,从查询原理的角度分析这个场景下的查询开销,并给出一个大概的性能数字,供大家参考

Es是一个分布式外壳,实际上执行数据处理的是lucene。es的底层就是lucene。

Lucene查询原理

本节主要是一些Lucene的背景知识,了解这些知识的同学可以略过。

Lucene的数据结构和查询原理

Elasticsearch的底层是Lucene,可以说Lucene的查询性能就决定了Elasticsearch的查询性能。关于Lucene的查询原理大家可以参考以下这篇文章:

Lucene查询原理

Lucene中最重要的就是它的几种数据结构,这决定了数据是如何被检索的,本文再简单描述一下几种数据结构:

  • FST:保存term字典,可以在FST上实现单Term、Term范围、Term前缀和通配符查询等

  • 倒排链:保存了每个term对应的docId的列表,采用skipList的结构保存,用于快速跳跃

  • BKD-Tree:BKD-Tree是一种保存多维空间点的数据结构,用于数值类型(包括空间点)的快速查找

  • DocValues:基于docId的列式存储,由于列式存储的特点,可以有效提升排序聚合的性能

组合条件的结果合并

了解了Lucene的数据结构和基本查询原理,我们知道:

  1. 对单个词条进行查询,Lucene会读取该词条的倒排链,倒排链中是一个有序的docId列表。
  2. 对字符串范围/前缀/通配符查询,Lucene会从FST中获取到符合条件的所有Term,然后就可以根据这些Term再查找倒排链,找到符合条件的doc。
  3. 对数字类型进行范围查找,Lucene会通过BKD-Tree找到符合条件的docId集合,但这个集合中的docId并非有序的。

现在的问题是,如果给一个组合查询条件,Lucene怎么对各个单条件的结果进行组合,得到最终结果。简化的问题就是如何求两个集合的交集和并集。

1. 对N个倒排链求交集

上面Lucene原理分析的文章中讲过,N个倒排链求交集,可以采用skipList,有效的跳过无效的doc。

2. 对N个倒排链求并集

处理方式一:仍然保留多个有序列表,多个有序列表的队首构成一个优先队列(最小堆),这样后续可以对整个并集进行iterator(堆顶的队首出堆,队列里下一个docID入堆),也可以通过skipList的方式向后跳跃(各个子列表分别通过skipList跳)。这种方式适合倒排链数量比较少(N比较小)的场景。

处理方式二:倒排链如果比较多(N比较大),采用方式一就不够划算,这时候可以直接把结果合并成一个有序的docID数组。

处理方式三:方式二中,直接保存原始的docID,如果docID非常多,很消耗内存,所以当doc数量超过一定值时(32位docID在BitSet中只需要一个bit,BitSet的大小取决于segments里的doc总数,所以可以根据doc总数和当前doc数估算是否BitSet更加划算),会采用构造BitSet的方式,非常节约内存,而且BitSet可以非常高效的取交/并集。

3. BKD-Tree的结果怎么跟其他结果合并

通过BKD-Tree查找到的docID是无序的,所以要么先转成有序的docID数组,或者构造BitSet,然后再与其他结果合并。

查询顺序优化

如果采用多个条件进行查询,那么先查询代价比较小的,再从小结果集上进行迭代,会更优一些。Lucene中做了很多这方面的优化,在查询前会先估算每个查询的代价,再决定查询顺序。

结果排序

默认情况下,Lucene会按照Score排序,即算分后的分数值,如果指定了其他的Sort字段,就会按照指定的字段排序。那么,排序会非常影响性能吗?首先,排序并不会对所有命中的doc进行排序,而是构造一个堆,保证前(Offset+Size)个数的doc是有序的,所以排序的性能取决于(Size+Offset)和命中的文档数,另外就是读取docValues的开销。因为(Size+Offset)并不会太大,而且docValues的读取性能很高,所以排序并不会非常的影响性能。

各场景查询性能分析

上一节讲了一些查询相关的理论知识,那么本节就是理论结合实践,通过具体的一些测试数字来分析一下各个场景的性能。测试采用单机单Shard、64核机器、SSD磁盘,主要分析各个场景的计算开销,不考虑操作系统Cache的影响,测试结果仅供参考。

单Term查询

ES中建立一个Index,一个shard,无replica。有1000万行数据,每行只有几个标签和一个唯一ID,现在将这些数据写入这个Index中。其中Tag1这个标签只有a和b两个值,现在要从1000万行中找到一条Tag1=a的数据(约500万)。给出以下查询,那么它耗时如何呢:
请求:
{"query": {"constant_score": {"filter": {"term": {"Tag1": "a"}}}},"size": 1
}'
响应:
{"took":233,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":5184867,"max_score":1.0,"hits":...}
这个请求耗费了233ms,并且返回了符合条件的数据总数:5184867条。

对于Tag1="a"这个查询条件,我们知道是查询Tag1="a"的倒排链,这个倒排链的长度是5184867,是非常长的,主要时间就花在扫描这个倒排链上。其实对这个例子来说,扫描倒排链带来的收益就是拿到了符合条件的记录总数,因为条件中设置了constant_score,所以不需要算分,随便返回一条符合条件的记录即可。对于要算分的场景,Lucene会根据词条在doc中出现的频率来计算分值,并取分值排序返回。

目前我们得到一个结论,233ms时间至少可以扫描500万的倒排链,另外考虑到单个请求是单线程执行的,可以粗略估算,一个CPU核在一秒内扫描倒排链内doc的速度是千万级的。

我们再换一个小一点的倒排链,长度为1万,总共耗时3ms。

{"took":3,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":10478,"max_score":1.0,"hits":...}

Term组合查询

首先考虑两个Term查询求交集:


  1. 这个请求耗时21ms,主要是做两个倒排链的求交操作,因此我们主要分析skipList的性能。

这个例子中,倒排链长度是1万、500万,合并后仍有5000多个doc符合条件。对于1万的倒排链,基本上不进行skip,因为一半的doc都是符合条件的,对于500万的倒排链,平均每次skip1000个doc。因为倒排链在存储时最小的单位是BLOCK,一个BLOCK一般是128个docID,BLOCK内不会进行skip操作。所以即使能够skip到某个BLOCK,BLOCK内的docID还是要顺序扫描的。所以这个例子中,实际扫描的docID数粗略估计也有几十万,所以总时间花费了20多ms也符合预期。

对于Term查询求并集呢,将上面的bool查询的must改成should,查询结果为:

{"took":393,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":5190079,"max_score":1.0,"hits":...}

花费时间393ms,所以求并集的时间是多于其中单个条件查询的时间。

字符串范围查询

RecordID是一个UUID,1000万条数据,每个doc都有一个唯一的uuid,从中查找0~7开头的uuid,大概结果有500多万个,性能如何呢?
请求:
{"query": {"constant_score": {"filter": {"range": {"RecordID": {"gte": "0","lte": "8"}}}}},"size": 1
}
响应:
{"took":3001,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":5185663,"max_score":1.0,"hits":...}查询a开头的uuid,结果大概有60多万,性能如何呢?请求:
{"query": {"constant_score": {"filter": {"range": {"RecordID": {"gte": "a","lte": "b"}}}}},"size": 1
}
响应:
{"took":379,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":648556,"max_score":1.0,"hits":...}
倒排链要差许多,同样扫描500万的数据,倒排链扫描只需要不到300ms,而FST上的扫描花费了3秒,基本上是慢十倍的。对于UUID长度的字符串来说,FST范围扫描的性能大概是每秒百万级。

字符串范围查询加Term查询

字符串范围查询(符合条件500万),加上两个Term查询(符合条件5000),最终符合条件数目2600,性能如何?
请求:
{"query": {"constant_score": {"filter": {"bool": {"must": [{"range": {"RecordID": {"gte": "0","lte": "8"}}},{"term": {"Tag1": "a"}},{"term": {"Tag2": "0"}}]}}}},"size": 1
}
结果:
{"took":2849,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":2638,"max_score":1.0,"hits":...}

这个例子中,查询消耗时间的大头还是在扫描FST的部分,通过FST扫描出符合条件的Term,然后读取每个Term对应的docID列表,构造一个BitSet,再与两个TermQuery的倒排链求交集。

数字Range查询

对于数字类型,我们同样从1000万数据中查找500万呢?
请求:
{"query": {"constant_score": {"filter": {"range": {"Number": {"gte": 100000000,"lte": 150000000}}}}},"size": 1
}
响应:
{"took":567,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":5183183,"max_score":1.0,"hits":...}

这个场景我们主要测试BKD-Tree的性能,可以看到BKD-Tree查询的性能还是不错的,查找500万个doc花费了500多ms,只比扫描倒排链差一倍,相比FST的性能有了很大的提升。地理位置相关的查询也是通过BKD-Tree实现的,性能很高。

数字Range查询加Term查询

这里我们构造一个复杂的查询场景,数字Range范围数据500万,再加两个Term条件,最终符合条件数据2600多条,性能如何?
请求:
{"query": {"constant_score": {"filter": {"bool": {"must": [{"range": {"Number": {"gte": 100000000,"lte": 150000000}}},{"term": {"Tag1": "a"}},{"term": {"Tag2": "0"}}]}}}},"size": 1
}
响应:
{"took":27,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":2638,"max_score":1.0,"hits":...}

这个结果出乎我们的意料,竟然只需要27ms!因为在上一个例子中,数字Range查询耗时500多ms,而我们增加两个Term条件后,时间竟然变为27ms,这是为何呢?

实际上,Lucene在这里做了一个优化,底层有一个查询叫做IndexOrDocValuesQuery,会自动判断是查询Index(BKD-Tree)还是DocValues。在这个例子中,查询顺序是先对两个TermQuery求交集,得到5000多个docID,然后读取这个5000多个docID对应的docValues,从中筛选符合数字Range条件的数据。因为只需要读5000多个doc的docValues,所以花费时间很少。

简单结论

  1. 总体上讲,扫描的doc数量越多,性能肯定越差。
  2. 单个倒排链扫描的性能在每秒千万级,这个性能非常高,如果对数字类型要进行Term查询,也推荐建成字符串类型。
  3. 通过skipList进行倒排链合并时,性能取决于最短链的扫描次数和每次skip的开销,skip的开销比如BLOCK内的顺序扫描等。
  4. FST相关的字符串查询要比倒排链查询慢很多(通配符查询更是性能杀手,本文未做分析)。
  5. 基于BKD-Tree的数字范围查询性能很好,但是由于BKD-Tree内的docID不是有序的,不能采用类似skipList的向后跳的方式,如果跟其他查询做交集,必须先构造BitSet,这一步可能非常耗时。Lucene中通过IndexOrDocValuesQuery对一些场景做了优化。

Es底层查询原理、数据结构、及性能分析相关推荐

  1. Elasticsearch专栏-7.es底层写入原理

    es底层写入原理 概念说明 es数据落盘过程 mysql数据落盘过程 redis数据落盘过程 概念说明 在第一章节中,已经提到过几个名词:lucence.segment.translog.refres ...

  2. SQL Server 查询分析器使用(性能分析)

    SQL Server 查询分析器使用(性能分析)--网摘 SQL Server运行性能的主要原因时,可以通过SQL Se rver Performance Monitor监视相应硬件的负载, 并找出系 ...

  3. 从 ES 到 Kylin,斗鱼客户端性能分析平台进化之旅

    一.背景 斗鱼是一家面向大众用户的在线直播平台,每天都有超大量的终端用户在使用斗鱼各客户端参与线上互动.伴随业务的迅猛发展,斗鱼需要对客户端采集到的性能数据进行统计和分析,开发出具有多维度分析图表和数 ...

  4. 计组之存储系统:5、cache(cache功能、cache工作原理、cache性能分析)

    5.cache 思维导图 为什么要cache? Cache的工作原理 局部性原理 性能分析(加入cache) 空间局部性中的"附近"怎么定义? 待解决的问题? 思维导图 为什么要c ...

  5. 2.python数据结构的性能分析

    一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结 ...

  6. ElasticSearch之查询性能分析

    本文章来源于:https://github.com/Zeb-D/my-review ,请star 强力支持,你的支持,就是我的动力. [TOC] 提问 面对着这么一个庞然大物,我们除了代码API写的六 ...

  7. ArrayList的底层实现原理

    ArrayList源码分析 1.java.util.ArrayList<E> : List 接口的大小可变数组的实现类 ArrayList 内部基于 数组 存储 各个元素. 所谓大小可变数 ...

  8. 性能之巅:常用性能分析方法

    目录 为了便于总结,这些方法已经被归类成了不同的类型 1.街灯讹方法 2.随机变动讹方法 3.责怪他人讹方法 4.AdHoc核对清单法 5.问题陈述法 6.科学法 7.诊断循环 8.工具法 9.USE ...

  9. MySQL调优之性能分析

    目录 1.SQL执行频率 2.SQL性能分析 慢查询日志 profile详情 开启profile 使用profile explain 1.SQL执行频率 MySQL客户端连接成功后,通过 show[s ...

最新文章

  1. DPDK — 数据平面开发技术
  2. 利用文件锁控制程序的执行
  3. Vivado 时序分析(理论篇) 卷一
  4. git切换路径报错:bash: cd: too many arguments
  5. 虚拟目录继承根Web.Config的问题解决(转)
  6. FlashFXP 5.4.0 注册
  7. 计算机二级ppt没弄内容,计算机二级office考试中PPT母版知识考察点有哪些
  8. eda交通灯控制器波形输入_EDA实验报告实验四:交通灯控制器设计
  9. Color Banding的个人记录
  10. 生动的ajax图片显示效果,LightBox
  11. Java编程初学者看什么书籍比较合适?
  12. Exchange Server 2013 运维系列——恢复已删除或禁用的邮箱
  13. “啃米族”云米的扑朔自立路
  14. ArcGIS教程:面积制表
  15. 【JavaScript】 对象 Object
  16. Js迷你图书管理系统
  17. 1037u支持64位linux吗,树莓派B+ BCM2835 vs Celeron 1037U性能对比测试
  18. 2023跨年烟花3D最炫烟花,html最酷炫动态烟花源码分享,点击即可直接运行
  19. SQL 注入漏洞检测与利用
  20. 爆款的诞生:《胡闹厨房2》的多人游戏模式解决方案

热门文章

  1. 获取山东省采购网招标/投标信息链接
  2. 微信小程序绘图实现图片拉伸,裁剪与压缩的方法,亲测使用实用
  3. 四川大学通报:现场挡获一男生在女卫生间偷拍!开除学籍!
  4. 数字化成熟度:迈出数字化转型的下一步
  5. C++自创打怪小游戏1.1.21023.425
  6. Latex中多行公式换行及设置编号位置
  7. cimoc 最新版_Cimoc最新版
  8. Django 模板常用过滤器
  9. C语言中对结构体排序
  10. 计算机体系结构-备考总结