pytorch实现:Resnet模型识别花朵数据集

  • 一、pytorch实现:Resnet模型识别花朵数据集
    • 1.1 训练模型
    • 1.2 图像预测和可视化
    • 1.3 对新来的数据进行处理和展示

一、pytorch实现:Resnet模型识别花朵数据集

1.1 训练模型

# Author: Liuxin
# Time: 2022/4/22
# 导入所需的包
import torch, torchvision
from torchvision import datasets, transforms, models  # torchvision包最重要的3个模块
import os
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from torch import optim
import imageio
import time
import warningswarnings.filterwarnings('ignore')  # 忽略告警
import random
import sys
import copy
import json
from PIL import Image# 数据读取路径
data_dir = r'./flower_data/'
train_dir = data_dir + 'train'
test_dir = data_dir + 'valid'# 数据预处理(数据增强)
data_transforms = {'train': transforms.Compose([transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选一个值进行旋转transforms.CenterCrop(224),  # 从图像中心开始裁剪图像为224*224的尺寸transforms.RandomHorizontalFlip(p=0.5),  # 水平方向依0.5的概率进行图像翻转transforms.RandomVerticalFlip(p=0.5),  # 垂直方向依0.5的概率进行图像翻转transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),# 参数brightness为亮度,参数contrast为对比度,参数saturation为饱和度,参数hue为色调transforms.RandomGrayscale(p=0.025),  # 以0.025的概率转换为灰度图,当原始图像为彩色图时,转换后R=G=Btransforms.ToTensor(),  # 转换为tensortransforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'valid': transforms.Compose([  # 验证集和测试机不需要进行数据增强操作,当尺寸与训练集不一样时,需要进行Resize操作transforms.Resize(256),  # 尺寸变为256*256transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 均值和标准差需要和训练集一致])
}# 数据导入
batch_size = 8
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x), transform=data_transforms[x]) for x in['train', 'valid']}  # 读取图像路径并进行transform操作
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in['train', 'valid']}
dataset_size = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes
print(image_datasets)
print(dataloaders)
print(dataset_size)
print(class_names)# 读取标签对应的实际花的名字
with open('./cat_to_name.json', 'r') as f:cat_to_name = json.load(f)
print(cat_to_name)
#结果
"""
{'train': Dataset ImageFolderNumber of datapoints: 6552Root location: ./flower_data/trainStandardTransform
Transform: Compose(RandomRotation(degrees=[-45.0, 45.0], interpolation=nearest, expand=False, fill=0)CenterCrop(size=(224, 224))RandomHorizontalFlip(p=0.5)RandomVerticalFlip(p=0.5)ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], hue=[-0.1, 0.1])RandomGrayscale(p=0.025)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])),
'valid': Dataset ImageFolderNumber of datapoints: 818Root location: ./flower_data/validStandardTransform
Transform: Compose(Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)CenterCrop(size=(224, 224))ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))}{'train': <torch.utils.data.dataloader.DataLoader object at 0x000001BB8E0CD850>,
'valid': <torch.utils.data.dataloader.DataLoader object at 0x000001BB8E0CD820>}{'train': 6552, 'valid': 818}['1', '10', '100', '101', '102', '11', '12', '13', '14', '15', '16', '17', '18', '19', '2', '20', '21', '22',
'23', '24', '25', '26', '27', '28', '29', '3', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
'4', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '5', '50', '51', '52', '53', '54', '55',
'56', '57', '58', '59', '6', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '7', '70', '71',
'72', '73', '74', '75', '76', '77', '78', '79', '8', '80', '81', '82', '83', '84', '85', '86', '87', '88',
'89', '9', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']{'21': 'fire lily', '3': 'canterbury bells', '45': 'bolero deep blue', '1': 'pink primrose', '34': 'mexican aster','27': 'prince of wales feathers', '7': 'moon orchid', '16': 'globe-flower', '25': 'grape hyacinth', '26': 'corn poppy', '79': 'toad lily', '39': 'siam tulip', '24': 'red ginger', '67': 'spring crocus', '35': 'alpine sea holly', '32': 'garden phlox', '10': 'globe thistle', '6': 'tiger lily', '93': 'ball moss', '33': 'love in the mist', '9': 'monkshood', '102': 'blackberry lily', '14': 'spear thistle', '19': 'balloon flower', '100': 'blanket flower', '13': 'king protea', '49': 'oxeye daisy', '15': 'yellow iris', '61': 'cautleya spicata', '31': 'carnation', '64': 'silverbush', '68': 'bearded iris', '63': 'black-eyed susan', '69': 'windflower', '62': 'japanese anemone', '20': 'giant white arum lily', '38': 'great masterwort', '4': 'sweet pea', '86': 'tree mallow', '101': 'trumpet creeper', '42': 'daffodil', '22': 'pincushion flower', '2': 'hard-leaved pocket orchid', '54': 'sunflower', '66': 'osteospermum', '70': 'tree poppy', '85': 'desert-rose', '99': 'bromelia', '87': 'magnolia', '5': 'english marigold', '92': 'bee balm', '28': 'stemless gentian', '97': 'mallow', '57': 'gaura', '40': 'lenten rose', '47': 'marigold', '59': 'orange dahlia', '48': 'buttercup', '55': 'pelargonium', '36': 'ruby-lipped cattleya', '91': 'hippeastrum', '29': 'artichoke', '71': 'gazania', '90': 'canna lily', '18': 'peruvian lily', '98': 'mexican petunia', '8': 'bird of paradise', '30': 'sweet william', '17': 'purple coneflower', '52': 'wild pansy', '84': 'columbine', '12': "colt's foot", '11': 'snapdragon', '96': 'camellia', '23': 'fritillary', '50': 'common dandelion', '44': 'poinsettia', '53': 'primula', '72': 'azalea', '65': 'californian poppy', '80': 'anthurium', '76': 'morning glory', '37': 'cape flower', '56': 'bishop of llandaff', '60': 'pink-yellow dahlia', '82': 'clematis', '58': 'geranium', '75': 'thorn apple', '41': 'barbeton daisy', '95': 'bougainvillea', '43': 'sword lily', '83': 'hibiscus', '78': 'lotus lotus', '88': 'cyclamen', '94': 'foxglove', '81': 'frangipani', '74': 'rose', '89': 'watercress', '73': 'water lily', '46': 'wallflower', '77': 'passion flower', '51': 'petunia'}
"""
# 展示数据
def im_convert(tensor):image = tensor.to('cpu').clone().detach()"""tensor.clone():返回tensor的拷贝,返回的新tensor和原来的tensor具有同样的大小和数据类型原tensor的requires_grad=True,clone()返回的tensor是中间节点,梯度会流向原tensor,即返回的tensor的梯度会叠加在原tensor上tensor.detach():从计算图中脱离出来,返回一个新的tensor,新的tensor和原来的tensor共享数据内存,但不涉及梯度计算"""image = image.numpy()  # 转换为数组image = image.transpose(1, 2, 0)  # 原图片是:通道数、高度、宽度,现在需要转换为高度、宽度、通道数image = image * np.array((0.485, 0.456, 0.406)) + np.array((0.229, 0.224, 0.225))  # 图片经过了标准化,现在需要复原image = image.clip(0, 1)  # 限制数组的上下限,下限为0,上限为1return imagefig = plt.figure(figsize=(20, 12))
cols = 4
rows = 2
dataiter = iter(dataloaders['valid'])  # 每次获取一个batch数据
inputs, classes = dataiter.next()
for idx in range(cols * rows):ax = fig.add_subplot(rows, cols, idx + 1, xticks=[], yticks=[])ax.set_title(cat_to_name[str(int(class_names[idx]))])plt.imshow(im_convert(inputs[idx]))
plt.show()

#定义运算设备CPU/GPU
model_name = 'resnet'
feature_extracting = True  # 是否采用训练好的特征
train_on_gpu = torch.cuda.is_available()  # 是否用GPU来训练
if not train_on_gpu:print('CUDA is not available, Training on CPU!')
else:print('CUDA is available, Training on GPU!')
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
#结果
"""
CUDA is not available, Training on CPU!
"""
# 迁移学习,加载models中提供的模型,用训练好的权重当做初始化参数
def set_parameter_require_grad(model, feature_extract):if feature_extract:for param in model.parameters():param.requires_grad = False# 加载模型
model_ft = models.resnet152()
#print(model_ft)# 参考pytorch官网的代码
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):# model_ft = None# input_size = 0if model_name == 'resnet':model_ft = models.resnet152(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.fc.in_features  # 改变最后一层的输入和输出model_ft.fc = nn.Sequential(nn.Linear(num_feature_in, num_classes),nn.LogSoftmax(dim=1))input_size = 224elif model_name == 'alexnet':model_ft = models.alexnet(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.classifier[6].in_features  # classifier[6]是全连接的最后一层Linear层model_ft.classifier[6] = nn.Linear(num_feature_in, num_classes)input_size = 224elif model_name == 'vgg':model_ft = models.vgg16(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.classifier[6].in_featuresmodel_ft.classifier[6] = nn.Linear(num_feature_in, num_classes)input_size = 224elif model_name == 'squeezenet':model_ft = models.squeezenet1_0(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1))input_size = 224elif model_name == 'densenet':model_ft = models.densenet121(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.classifier.in_featuresmodel_ft.classifier = nn.Linear(num_feature_in, num_classes)input_size = 224elif model_name == 'inception':  # 此模型要求输入图像为229*229model_ft = models.inception_v3(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.AuxLogits.fc.in_featuresmodel_ft.AuxLogits.fc = nn.Linear(num_feature_in, num_classes)input_size = 229else:print('Invalid model name, exiting...')return model_ft, input_size# 设置哪些层需要训练
model_ft, input_size = initialize_model(model_name, 102, feature_extracting,use_pretrained=True)  # is_inception参数是给inception模型用的
# CPU进行计算
model_ft = model_ft.to(device)
# 模型保存
file_path = './checkpoint.pth' #训练完成后的参数模型路径,模型参数结果以.pth后缀
# 是否训练所有层
params_to_update = model_ft.parameters()
print('Params to learn')
if feature_extracting:params_to_update = []for name, param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print('\t', name)
else:for name, param in model_ft.named_parameters():if param.requires_grad == True:print('\t', name)
print(model_ft)  # 打印网络架构
"""
ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(4): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(5): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(6): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(7): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer3): Sequential((0): Bottleneck((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(5): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(6): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(7): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(8): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(9): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(10): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(11): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(12): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(13): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(14): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(15): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(16): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(17): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(18): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(19): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(20): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(21): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(22): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(23): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(24): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(25): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(26): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(27): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(28): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(29): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(30): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(31): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(32): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(33): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(34): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(35): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer4): Sequential((0): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
-----------------------------------------------------------------------------------
Params to learnfc.0.weightfc.0.bias
"""
# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)  # 学习率衰减,每训练7个epoch,学习率衰减为原来的1/10
# 最后一层已经有LogSoftmax()了,所以不能再nn.CrossEntropyLoss()来计算损失了
# nn.CrossEntropyLoss()相当于LogSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()# 进行训练
def train(model, dataloader, criterion, optimizer, num_epoch=5, filename=file_path):start = time.time()best_acc = 0model.to(device)val_acc = []val_loss = []train_acc = []train_loss = []LRs = [optimizer.param_groups[0]['lr']]  # 取出lrbest_model_weights = copy.deepcopy(model.state_dict())for epoch in range(num_epoch):print('Epoch {}/{}'.format(epoch, num_epoch - 1))print('-' * 10)for phase in ['train', 'valid']:if phase == 'train':model.train()else:model.eval()running_loss = 0.0running_corrects = 0.0# 遍历数据集for inputs, labels in dataloader[phase]:inputs = inputs.to(device)labels = labels.to(device)optimizer.zero_grad()# 只有训练阶段才进行梯度更新with torch.set_grad_enabled(phase == 'train'):  # torch.set_grad_enabled(True)时才更新梯度,False时不更新梯度outputs = model(inputs)loss = criterion(outputs, labels)preds = torch.argmax(outputs, 1)if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / len(dataloader[phase].dataset)epoch_acc = running_corrects / len(dataloader[phase].dataset)time_elapsed = time.time() - startprint('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_weights = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),'best_acc': best_acc,'optimizer': optimizer.state_dict()}torch.save(state, filename)if phase == 'valid':val_acc.append(epoch_acc)val_loss.append(epoch_loss)scheduler.step(epoch_loss)if phase == 'train':train_acc.append(epoch_acc)train_loss.append(epoch_loss)print('Optimizer learning rate: {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])time_elapsed = time.time() - startprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完保存最好的模型结果model.load_state_dict(best_model_weights)return model, val_acc, train_acc, val_loss, train_loss, LRs# 开始训练
model_ft, val_acc, train_acc, valid_loss, train_loss, LRs = train(model_ft,dataloaders,criterion,optimizer_ft,num_epoch=5)
#结果
"""
Epoch 0/4
----------
Time elapsed 20m 16s
train Loss: 10.0411 Acc: 0.3132
Time elapsed 22m 34s
valid Loss: 12.0470 Acc: 0.3765
Optimizer learning rate: 0.0010000
Epoch 1/4
----------
Time elapsed 42m 49s
train Loss: 2.3768 Acc: 0.6980
Time elapsed 45m 6s
valid Loss: 3.3266 Acc: 0.6357
Optimizer learning rate: 0.0100000
Epoch 2/4
----------
Time elapsed 66m 21s
train Loss: 9.7728 Acc: 0.4770
Time elapsed 68m 46s
valid Loss: 15.3826 Acc: 0.4389
Optimizer learning rate: 0.0001000
Epoch 3/4
----------
Time elapsed 90m 8s
train Loss: 4.7683 Acc: 0.6784
Time elapsed 92m 27s
valid Loss: 6.8775 Acc: 0.6088
Optimizer learning rate: 0.0100000
Epoch 4/4
----------
Time elapsed 110m 31s
train Loss: 9.1733 Acc: 0.5499
Time elapsed 112m 31s
valid Loss: 14.6585 Acc: 0.4707
Optimizer learning rate: 0.0001000
Training complete in 112m 31s
Best val Acc: 0.635697
"""

1.2 图像预测和可视化

# Author: Liuxin
# Time: 2022/4/27
# 进行测试
import torch, torchvision
from torchvision import datasets, transforms, models  # torchvision包最重要的3个模块
import os
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from torch import optim
import imageio
import time
import warningswarnings.filterwarnings('ignore')  # 忽略告警
import random
import sys
import copy
import json
from PIL import Image# 数据读取路径
data_dir = r'./flower_data/'
train_dir = data_dir + 'train'
test_dir = data_dir + 'valid'# 数据预处理(数据增强)
data_transforms = {'train': transforms.Compose([transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选一个值进行旋转transforms.CenterCrop(224),  # 从图像中心开始裁剪图像为224*224的尺寸transforms.RandomHorizontalFlip(p=0.5),  # 水平方向依0.5的概率进行图像翻转transforms.RandomVerticalFlip(p=0.5),  # 垂直方向依0.5的概率进行图像翻转transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),# 参数brightness为亮度,参数contrast为对比度,参数saturation为饱和度,参数hue为色调transforms.RandomGrayscale(p=0.025),  # 以0.025的概率转换为灰度图,当原始图像为彩色图时,转换后R=G=Btransforms.ToTensor(),  # 转换为tensortransforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'valid': transforms.Compose([  # 验证集和测试机不需要进行数据增强操作,当尺寸与训练集不一样时,需要进行Resize操作transforms.Resize(256),  # 尺寸变为256*256transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 均值和标准差需要和训练集一致])
}# 读取标签对应的实际花的名字
with open('./cat_to_name.json', 'r') as f:cat_to_name = json.load(f)# print(cat_to_name)# 展示数据
def im_convert(tensor):image = tensor.to('cpu').clone().detach()"""tensor.clone():返回tensor的拷贝,返回的新tensor和原来的tensor具有同样的大小和数据类型原tensor的requires_grad=True,clone()返回的tensor是中间节点,梯度会流向原tensor,即返回的tensor的梯度会叠加在原tensor上tensor.detach():从计算图中脱离出来,返回一个新的tensor,新的tensor和原来的tensor共享数据内存,但不涉及梯度计算"""image = image.numpy()  # 转换为数组image = image.transpose(1, 2, 0)  # 原图片是:通道数、高度、宽度,现在需要转换为高度、宽度、通道数image = image * np.array((0.485, 0.456, 0.406)) + np.array((0.229, 0.224, 0.225))  # 图片经过了标准化,现在需要复原image = image.clip(0, 1)  # 限制数组的上下限,下限为0,上限为1return image# 数据导入
batch_size = 8
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x), transform=data_transforms[x]) for x in['train', 'valid']}  # 读取图像路径并进行transform操作
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in['train', 'valid']}
dataset_size = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classesdef set_parameter_require_grad(model, feature_extract):if feature_extract:for param in model.parameters():param.requires_grad = False# 参考pytorch官网的代码
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):  # 选定模型及训练的函数# model_ft = None# input_size = 0if model_name == 'resnet':model_ft = models.resnet152(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.fc.in_features  # 改变最后一层的输入和输出model_ft.fc = nn.Sequential(nn.Linear(num_feature_in, num_classes),nn.LogSoftmax(dim=1))input_size = 224elif model_name == 'alexnet':model_ft = models.alexnet(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.classifier[6].in_features  # classifier[6]是全连接的最后一层Linear层model_ft.classifier[6] = nn.Linear(num_feature_in, num_classes)input_size = 224elif model_name == 'vgg':model_ft = models.vgg16(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.classifier[6].in_featuresmodel_ft.classifier[6] = nn.Linear(num_feature_in, num_classes)input_size = 224elif model_name == 'squeezenet':model_ft = models.squeezenet1_0(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1))input_size = 224elif model_name == 'densenet':model_ft = models.densenet121(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.classifier.in_featuresmodel_ft.classifier = nn.Linear(num_feature_in, num_classes)input_size = 224elif model_name == 'inception':  # 此模型要求输入图像为229*229model_ft = models.inception_v3(pretrained=use_pretrained)set_parameter_require_grad(model_ft, feature_extract)num_feature_in = model_ft.AuxLogits.fc.in_featuresmodel_ft.AuxLogits.fc = nn.Linear(num_feature_in, num_classes)input_size = 229else:print('Invalid model name, exiting...')return model_ft, input_sizedevice = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
model_name = 'resnet'
feature_extracting = True  # 是否采用训练好的特征
model_ft, input_size = initialize_model(model_name, 102, feature_extracting, use_pretrained=True)
# GPU模式
model_ft = model_ft.to(device)
# 保存文件的名字
filename = './checkpoint.pth'
# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()model_ft.eval()
train_on_gpu = torch.cuda.is_available()  # 是否用GPU来训练
if train_on_gpu:output = model_ft(images.cuda())
else:output = model_ft(images)print(output.shape)  # output表示对一个batch中每一个数据得到其属于各个类别的可能性preds_tensor = torch.argmax(output, 1)
print(preds_tensor)preds = np.squeeze(preds_tensor.numpy()) if train_on_gpu else np.squeeze(preds_tensor.cpu().numpy()) #np.squeeze函数将多维数组或矩阵框数据转换为纯数据
#preds=list(preds_tensor.numpy()) 和上一行效果一样
print(preds)fig = plt.figure(figsize=(20, 20))
columns = 4
rows = 2for idx in range(columns * rows):ax = fig.add_subplot(rows, columns, idx + 1, xticks=[], yticks=[])plt.imshow(im_convert(images[idx]))ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),color=("green" if cat_to_name[str(preds[idx])] == cat_to_name[str(labels[idx].item())] else "red"))
plt.show()#结果
"""
output.shape:torch.Size([8, 102])
preds_tensor:tensor([43, 24, 64, 49, 64, 34, 18, 89])
preds:[43 24 64 49 64 34 18 89]
"""

1.3 对新来的数据进行处理和展示

def process_image(image_path):# 读取测试数据img = Image.open(image_path)# Resize,thumbnail方法只能进行缩小,所以进行了判断if img.size[0] > img.size[1]:img.thumbnail((10000, 256))  # Image.thumbnail()将此图像制作为缩略图。此方法将图像修改为包含其自身的缩略图版本,但不大于给定的大小# 用法:Image.thumbnail(size, resample=3),参数:size-要求的尺寸,一个元祖。resample-可选的重采样过滤器。返回类型:Image对象。else:img.thumbnail((256, 10000))# Crop操作left_margin = (img.width - 224) / 2bottom_margin = (img.height - 224) / 2right_margin = left_margin + 224top_margin = bottom_margin + 224img = img.crop((left_margin, bottom_margin, right_margin,top_margin))# 相同的预处理方法img = np.array(img) / 255mean = np.array([0.485, 0.456, 0.406])  # provided meanstd = np.array([0.229, 0.224, 0.225])  # provided stdimg = (img - mean) / std# 注意颜色通道应该放在第一个位置img = img.transpose((2, 0, 1))return imgdef imshow(image, ax=None, title=None):"""展示数据"""if ax is None:fig, ax = plt.subplots()# 颜色通道还原image = np.array(image).transpose((1, 2, 0))# 预处理还原mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])image = std * image + meanimage = np.clip(image, 0, 1)ax.imshow(image)ax.set_title(title)return ax
image_path = 'image_04248.jpg'
img = process_image(image_path)
imshow(img)
print(img.shape)
#结果:(3, 224, 224)

pytorch实现:Resnet模型识别花朵数据集(参考pytorch官网代码)相关推荐

  1. 轮播图进度条同步切换(参考漫威官网)

    轮播图进度条同步切换(参考漫威官网) <!DOCTYPE html> <html lang="en"><head><meta charse ...

  2. Pytorch DataLoader一次性封装多种数据集(pytorch Data学习六)

    Pytorch的DataLoader不能够直接达到这个效果,必须要借助DataSet来实现 DataSet的用法可以参考:pytorch 构造读取数据的工具类 Dataset 与 DataLoader ...

  3. VScode的mac版本C++配置(参考官网教程)

    VScode的mac版本C++配置 一. 基本情况 PAST:我使用的是Xcode. NOW:转VScode 参考VScode 官网 实现完本文会生成的3个文件 二.配置基本步骤 Step 1:下载 ...

  4. 基于pytorch搭建神经网络的花朵种类识别(深度学习)

    基于pytorch搭建神经网络的花朵种类识别(深度学习) 文章目录 基于pytorch搭建神经网络的花朵种类识别(深度学习) 一.知识点 1.特征提取.神经元逐层判断 2.中间层(隐藏层) 3.学习权 ...

  5. Deep Learning:基于pytorch搭建神经网络的花朵种类识别项目(内涵完整文件和代码)—超详细完整实战教程

    基于pytorch的深度学习花朵种类识别项目完整教程(内涵完整文件和代码) 相关链接:: 超详细--CNN卷积神经网络教程(零基础到实战) 大白话pytorch基本知识点及语法+项目实战 文章目录 基 ...

  6. 动物数据集+动物分类识别训练代码(Pytorch)

    动物数据集+动物分类识别训练代码(Pytorch) 目录 动物数据集+动物分类识别训练代码(Pytorch) 1. 前言 2. Animals-Dataset动物数据集说明 (1)Animals90动 ...

  7. 图像分类篇:pytorch实现ResNet

    一.ResNet详解 ResNet网络是在2015年由微软实验室提出的,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名,获得COCO数据集中目标检测第一名,图像分类第一名. 在ResNe ...

  8. 使用pytorch版faster-rcnn训练自己数据集

    使用pytorch版faster-rcnn训练自己数据集 引言 faster-rcnn pytorch代码下载 训练自己数据集 接下来工作 参考文献 引言 最近在复现目标检测代码(师兄强烈推荐FPN, ...

  9. 深度之眼Pytorch打卡(九):Pytorch数据预处理——预处理过程与数据标准化(transforms过程、Normalize原理、常用数据集均值标准差与数据集均值标准差计算)

    前言   前段时间因为一些事情没有时间或者心情学习,现在两个多月过去了,事情结束了,心态也调整好了,所以又来接着学习Pytorch.这篇笔记主要是关于数据预处理过程.数据集标准化与数据集均值标准差计算 ...

最新文章

  1. 5G NGC — 关键技术 — 计算与存储分离
  2. 山西大学计算机科学与技术全国排名,山西这所大学曾是国内排名前五,如今排名下滑,有点走下坡路了...
  3. KDE和GNOME的区别※切换
  4. vim查找关键字_vim常用命令及操作
  5. Tomcat访问日志详细配置
  6. bat(续六)-windows批处理set命令
  7. azw3转换为pdf_怎么合并几个PDF为一个?快用这个PDF转换器!
  8. JS switch 分支语句
  9. github删除文件_Linux环境下Github操作指南
  10. WCF作为SAO技术的核心:契约
  11. Python虚拟机之if控制流(一)
  12. QTP11.5/UFT官方下载与安装
  13. python全栈工程师视频_python全栈工程师视频教程
  14. 俄罗斯方块中方块的旋转变形
  15. 基于5g的交通运输_一种基于5G的智慧交通基础服务平台
  16. easyui datagrid deleteRow(删除行)的BUG或者updateRow值更新了不展示问题
  17. VC++ excel 写入与写出数据
  18. ARM NEON Intrinsics示例
  19. 46道史上最全Redis面试题
  20. AUTOSAR MCAL解析:MCU

热门文章

  1. 《网络、群体和市场》习题答案
  2. 兼职必看的全行业薪酬对照表
  3. 微信公众号免开发——被关注自动回复2条消息
  4. Spark sql HLL函数
  5. JavaWeb实例:西蒙购物网
  6. 国外云服务器哪个好?云服务器选择什么配置合适?
  7. 爱签电子合同助力医院患者信息表跨科室在线签署,实名认证、自动归档
  8. 文章怎么这么多!!!!!(超分辨率相关)
  9. 《隐秘的角落》影评数据分析
  10. android旅游app动态的,Android平台深秋出游必备APP推荐