点击上方“计算机视觉工坊”,选择“星标”

干货第一时间送达

背景&引言

文中指出DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题,并且方法能够简单地迁移到现有的算法中带来性能的提升,实验在YOLOv3上提升了5.91mAP。

其中B={x,y,w,h} 是预测框,  是 ground-truth。IoU是目标检测里面很重要的一个指标,通过预测的框和GT间的交集与并集的比例进行计算,经常用于评价bbox的优劣 。但一般对bbox的精调都采用L2范数,而一些研究表明这不是最优化IoU的方法,因此出现了IoU loss。

IoU Loss

IoU loss顾名思义就是直接通过IoU计算梯度进行回归,论文提到IoU loss的无法避免的缺点:当两个box无交集时,IoU=0,很近的无交集框和很远的无交集框的输出一样,这样就失去了梯度方向,无法优化。IoU loss的实现形式有很多种,除公式2外,还有UnitBox的交叉熵形式和IoUNet的Smooth-L1形式。

这里论文主要讨论的类似YOLO的检测网络,按照GT是否在cell判断当前bbox是否需要回归,所以可能存在无交集的情况。而一般的two stage网络,在bbox regress的时候都会卡,  不会对无交集的框进行回归。

GIoU Loss

GIou loss在IoU loss的基础上增加一个惩罚项,  为包围预测框  和  的最小区域大小,当bbox的距离越大时,惩罚项将越大。尽管GIoU解决了IoU的梯度问题,但他仍然存在几个限制:

上图可以很好的来说明GIoU不稳定以及收敛很慢的原因。上图中第一行三张图展示的是GIoU的回归过程,其中绿色框为目标框,黑色框为anchor,蓝色框为不同次数的迭代后,anchor的偏移结果。第二行三张图展示的是DIoU的回归过程,其中绿色框为目标框,黑色框为anchor,红色框为不同次数的迭代后,anchor的偏移结果。从图中我们可以看到,GIoU在回归的过程中,从损失函数的形式我们发现,当IoU为0时,GIoU会先尽可能让anchor能够和目标框产生重叠,之后GIoU会渐渐退化成IoU回归策略,因此整个过程会非常缓慢而且存在发散的风险。而DIoU考虑到anchor和目标之间的中心点距离,可以更快更有效更稳定的进行回归。

如上图中的包含情况,GIoU会退化成IoU(三个位置预测框和gt框所包围的最小面积相同,惩罚项c保持一致,梯度发散)。由于很大程度依赖IoU项,GIoU需要更多的迭代次数来收敛,特别是水平和垂直的bbox(后面会分析)。一般地,GIoU loss不能很好地收敛SOTA算法,反而造成不好的结果。

综合上面的分析,论文提出Distance-IoU(DIoU) loss,简单地在IoU loss基础上添加一个惩罚项,该惩罚项用于最小化两个bbox的中心点距离。如图1所示,DIoU收敛速度和效果都很好,而且DIoU能够用于NMS的计算中,不仅考虑了重叠区域,还考虑了中心点距离。另外,论文考虑bbox的三要素,重叠区域,中心点距离和长宽比,进一步提出了Complete IoU(CIoU) loss,收敛更快,效果更好。

知识回顾

IoU and GIoU Losses

为了全面地分析IoU loss和GIoU的性能,论文进行了模拟实验,模拟不同的距离、尺寸和长宽比的bbox的回归情况,如下图所示:

  • 绿色框代表仿真实验需要回归的七个不同尺度的目标框,七个目标框的中心点坐标都是(10 * 10);

  • 蓝色的点代表了所有anchor的中心点,中心点的分布如上图所示,各个方向都有,各种距离都有,当然每个anchor的一个中心点都包含有七个不同面积的anchor框。而且每个面积的anchor框又有七种不同的比例尺寸。因此一共有5000个蓝色点,对应5000*7*7个anchor框,并且每个anchor框都需要回归到七个gt目标框上,因此一共有5000*7*7*7个回归案例。

最终的实验结果如下:图中展示的训练同样的步数后(200步),IoU,GIoU以及本文提出的DIoU、CIoU作为loss的情况下,每个anchor的误差分布。

  • IoU:从IoU误差的曲线我们可以发现,anchor越靠近边缘,误差越大,那些与目标框没有重叠的anchor基本无法回归;

  • GIoU:从GIoU误差的曲线我们可以发现,对于一些没有重叠的anchor,GIoU的表现要比IoU更好。但是由于GIoU仍然严重的依赖IoU,因此在两个垂直方向,误差很大,基本很难收敛,这就是GIoU不稳定的原因;

  • DIoU:从DIoU误差的曲线我们可以发现,对于不同距离,方向,面积和比例的anchor,DIoU都能做到较好的回归。

具体伪算法步骤如下:

对于预测框  ,当前迭代(current iteration epochs = t)回合,  可以通过下式获得:

给定一个loss函数  ,可以通过梯度下降来模拟bbox优化的过程。对于预测的bbox  , 为阶段的结果,(  )'为  对  的梯度,使用  来加速收敛。bbox的优化评价使用 -norm,共训练200轮,error曲线如下图所示:

论文将5000个中心点上的bbox在最后阶段的total error进行了可视化。IoU loss只对与target box有交集的bbox有效,因为无交集的bbox的梯度为0。而GIoU由于增加了惩罚函数,中间大部分区域错误率明显减少,但是垂直和水平的区域依然保持着高的error,这是由于GIoU的惩罚项经常很小甚至为0,导致训练需要更多的迭代来收敛。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「计算机视觉工坊」公众号后台回复:深度学习,即可下载深度学习算法、3D深度学习、深度学习框架、目标检测、GAN等相关内容近30本pdf书籍。

下载2

在「计算机视觉工坊」公众号后台回复:计算机视觉,即可下载计算机视觉相关17本pdf书籍,包含计算机视觉算法、Python视觉实战、Opencv3.0学习等。

下载3

在「计算机视觉工坊」公众号后台回复:SLAM,即可下载独家SLAM相关视频课程,包含视觉SLAM、激光SLAM精品课程。

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、orb-slam3等视频课程)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

基于DIou改进的YOLOv3目标检测相关推荐

  1. cv dnn识别动作规范 open_[mcj]基于Opencv-DNN模块的YOLOv3目标检测并保存视频(C++)|YOLOV3修改检测物体为特定类别如飞机行人...

    在这篇文章中,我们将学习如何使用YOLOv3(一种最先进的物体探测器)与OpenCV. YOLOv3是流行的物体检测算法YOLO的最新变种- 你只看一次.已发布的模型可识别图像和视频中的80个不同对象 ...

  2. 基于深度卷积神经网络的目标检测研究综述

    基于深度卷积神经网络的目标检测研究综述 人工智能技术与咨询 来自<光学精密工程> ,作者范丽丽等 摘要:作为计算机视觉中的基本视觉识别问题,目标检测在过去的几十年中得到了广泛地研究.目标检 ...

  3. 分析YOLOv3目标检测

    前言 YOLOv3模型比之前的模型复杂了,但是精度也提高了.YOLOv3最大的变化包括两点:使用残差模型和采用FPN架构.YOLO2曾采用passthrough结构来检测细粒度特征,在YOLO3更进一 ...

  4. 视频教程-YOLOv3目标检测:原理与源码解析-计算机视觉

    YOLOv3目标检测:原理与源码解析 大学教授,美国归国博士.博士生导师:人工智能公司专家顾问:长期从事人工智能.物联网.大数据研究:已发表学术论文100多篇,授权发明专利10多项 白勇 ¥78.00 ...

  5. 使用PyTorch从零开始实现YOLO-V3目标检测算法 (一)

    原文:https://blog.csdn.net/u011520516/article/details/80222743 点击查看博客原文 标检测是深度学习近期发展过程中受益最多的领域.随着技术的进步 ...

  6. 基于深度学习的显著性目标检测方法综述

    源自:电子学报       作者:罗会兰  袁璞  童康 摘 要 显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索.公共安全等领域均有广泛的应 ...

  7. YOLOv3目标检测算法——通俗易懂的解析

    目录 YOLOv3目标检测算法 前沿 一.YOLOv3 二.损失函数 YOLOv3目标检测算法 前沿 前两篇文章我们讲了下关于YOLOv1和YOLOv2的原理,有不懂的小伙伴可以回到前面再看看: YO ...

  8. 基于深度学习的小目标检测方法综述

    随着深度学习的发展,基于深度学习的目标检测技术取得了巨大的进展,但小目标由于像素少,难以提取有效信息,造成小目标的检测面临着巨大的困难和挑战. 为了提高小目标的检测性能,研究人员从网络结构.训练策略. ...

  9. 【yolov3目标检测】(3) opencv+yolov3 检测交通路况,附python完整代码

    各位同学好,今天和大家分享一下如何使用 opencv 调用 yolov3 模型,加载网络权重,很方便地实现 yolov3 目标检测.先放张图看效果. 使用的网上找的行车记录仪视频做测试,数据集采用CO ...

  10. 使用pytorch从零开始实现YOLO-V3目标检测算法 (二)

    原文:https://blog.csdn.net/u011520516/article/details/80212960 博客翻译 这是从零开始实现YOLO v3检测器的教程的第2部分.在上一节中,我 ...

最新文章

  1. python平均工资-2020 10大薪资最高的IT编程语言排名
  2. 史上最‘牛’杀毒软件之麦咖啡
  3. 世界对一名颓废者的惩罚——SDOI2019R1游记
  4. windows环境下tensorflow安装过程详解(亲测安装成功后测试那块)
  5. php日期提示警告,php程序报date()警告的处理的解决方法
  6. 用java程序for循环打印菱形_编写Java程序,应用for循环打印菱形、三角形
  7. 大学计算机二级培训蹭课,本人在复旦大学蹭课总结的一点小小的经验
  8. 实用js小汇总--获取服务器控件ID
  9. 复杂,软件的大敌![转]
  10. React Native npm镜像安装命令
  11. mac 版 idea 破解
  12. STM32 触摸屏触摸功能
  13. 浏览器无法显示网页解决方法
  14. [java 新手练习1]5x5横排竖排方阵代码(java)
  15. 三件套都有什么_单人床品三件套都有哪些?
  16. 5.2 odex文件
  17. php如何获取json里的值,如何从JSON PHP正确获取值?
  18. 如何利用电容谐振改善PDN阻抗-电源完整性
  19. c语言二目运算符. -
  20. 基于微波光子I/Q去斜接受的雷达系统

热门文章

  1. Day 14 python 之 字符串练习
  2. 2017年1月14 15开车总结 英西
  3. HTTP请求报文格式
  4. 解决Odoo出现的Unable to send email, please configure the sender's email address or alias.
  5. 如何在有线路由器下接无线路由
  6. 关于button onclick a href 分析
  7. Linux Apache Mysql PHP典范设置装备安排-2
  8. windows下Redis的安装和使用
  9. C#开发之DataGridView填充数据使用小结
  10. 详解JavaScript的闭包