转载地址:http://www.360doc.com/content/18/0502/16/496343_750516698.shtml

一、启动文件解析

启动文件由汇编编写,是系统上电复位后第一个执行的程序。主要做了以下工作:

  • 初始化堆栈指针SP=_initial_sp
  • 初始化PC指针=Reset_Handler
  • 初始化中断向量表
  • 配置系统时钟
  • 调用C库函数_main初始化用户堆栈,从而最终调用main函数去到C的世界

二、查找ARM汇编指令

在讲解启动代码的时候,会涉及到ARM的汇编指令和Cortex内核的指令,有关Cortex内核的指令我们可以参考《CM3权威指南CnR2》第四章:指令集。剩下的ARM的汇编指令我们可以在MDK->Help->Uvision Help中搜索到,以EQU为例,检索如下:

检索出来的结果会有很多,我们只需要看Assembler User Guide 这部分即可。下面列出了启动文件中使用到的ARM汇编指令,该列表的指令全部从ARM Development Tools这个帮助文档里面检索而来。其中编译器相关的指令WEAK和ALIGN为了方便也放在同一个表格了。

下表格是启动文件使用的ARM汇编指令汇总

指令名称

作用

EQU

给数字常量取一个符号名,相当于C语言中的define

AREA

汇编一个新的代码段或者数据段

SPACE

分配内存空间

PRESERVE8

当前文件堆栈需按照8字节对齐

EXPORT

声明一个标号具有全局属性,可被外部的文件使用

DCD

以字为单位分配内存,要求4字节对齐,并要求初始化这些内存

PROC

定义子程序,与ENDP成对使用,表示子程序结束

WEAK

弱定义,如果外部文件声明了一个标号,则优先使用外部文件定义的标号,如果外部文件没有定义也不出错。要注意的是:这个不是ARM的指令,是编译器的,这里放在一起只是为了方便。

IMPORT

声明标号来自外部文件,跟C语言中的EXTERN关键字类似

B

跳转到一个标号

ALIGN

编译器对指令或者数据的存放地址进行对齐,一般需要跟一个立即数,缺省表示4字节对齐。要注意的是:这个不是ARM的指令,是编译器的,这里放在一起只是为了方便。

END

到达文件的末尾,文件结束

IF,ELSE,ENDIF

汇编条件分支语句,跟C语言的if else类似

三、启动文件代码讲解

1.    Stack—栈

Stack_Size      EQU     0x00000400AREA    STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem       SPACE   Stack_Size
__initial_sp

开辟栈的大小为0X00000400(1KB),名字为STACK,NOINIT即不初始化,可读可写,8(2^3)字节对齐。

栈的作用是用于局部变量,函数调用,函数形参等的开销,栈的大小不能超过内部SRAM的大小。如果编写的程序比较大,定义的局部变量很多,那么就需要修改栈的大小。如果某一天,你写的程序出现了莫名奇怪的错误,并进入了硬fault的时候,这时你就要考虑下是不是栈不够大,溢出了。

EQU:宏定义的伪指令,相当于等于,类似与C中的define。

AREA:告诉汇编器汇编一个新的代码段或者数据段。STACK表示段名,这个可以任意命名;NOINIT表示不初始化;READWRITE表示可读可写,ALIGN=3,表示按照2^3对齐,即8字节对齐。

SPACE:用于分配一定大小的内存空间,单位为字节。这里指定大小等于Stack_Size。

标号__initial_sp紧挨着SPACE语句放置,表示栈的结束地址,即栈顶地址,栈是由高向低生长的。

2.    Heap堆

Heap_Size       EQU     0x00000200AREA    HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem        SPACE   Heap_Size
__heap_limit

开辟堆的大小为0X00000200(512字节),名字为HEAP,NOINIT即不初始化,可读可写,8(2^3)字节对齐。__heap_base表示对的起始地址,__heap_limit表示堆的结束地址。堆是由低向高生长的,跟栈的生长方向相反。

堆主要用来动态内存的分配,像malloc()函数申请的内存就在堆上面。这个在STM32里面用的比较少。

                PRESERVE8THUMB

PRESERVE8指定当前文件的堆栈按照8字节对齐。

THUMB表示后面指令兼容THUMB指令。THUBM是ARM以前的指令集,16bit,现在Cortex-M系列的都使用THUMB-2指令集,THUMB-2是32位的,兼容16位和32位的指令,是THUMB的超级。

3.    向量表

; Vector Table Mapped to Address 0 at ResetAREA    RESET, DATA, READONLYEXPORT  __VectorsEXPORT  __Vectors_EndEXPORT  __Vectors_Size

定义一个数据段,名字为RESET,可读。并声明__Vectors、__Vectors_End和__Vectors_Size这三个标号具有全局属性,可供外部的文件调用。

EXPORT声明一个标号可被外部的文件使用,使标号具有全局属性。如果是IAR编译器,则使用的是GLOBAL这个指令。

当内核响应了一个发生的异常后,对应的异常服务例程(ESR)就会执行。为了决定ESR 的入口地址,内核使用了"向量表查表机制"。这里使用一张向量表。向量表其实是一个WORD(32 位整数)数组,每个下标对应一种异常,该下标元素的值则是该ESR 的入口地址。向量表在地址空间中的位置是可以设置的,通过NVIC 中的一个重定位寄存器来指出向量表的地址。在复位后,该寄存器的值为0。因此,在地址0 (即FLASH 地址0)处必须包含一张向量表,用于初始时的异常分配。要注意的是这里有个另类:0 号类型并不是什么入口地址,而是给出了复位后MSP 的初值。

编号

优先级

优先级类型

名称

说明

地址

 

-

-

-

保留(实际存的是MSP地址)

0X0000 0000

 

-3

固定

Reset

复位

0X0000 0004

 

-2

固定

NMI

不可屏蔽中断。 RCC 时钟安全系统(CSS) 连接到 NMI 向量

0X0000 0008

 

-1

固定

HardFault

所有类型的错误

0X0000 000C

 

0

可编程

MemManage

存储器管理

0X0000 0010

 

1

可编程

BusFault

预取指失败,存储器访问失败

0X0000 0014

 

2

可编程

UsageFault

未定义的指令或非法状态

0X0000 0018

 

-

-

-

保留

0X0000 001C-

0X0000 002B

 

3

可编程

SVCall

通过 SWI 指令调用的系统服务

0X0000 002C

 

4

可编程

Debug Monitor

调试监控器

0X0000 0030

 

-

-

-

保留

0X0000 0034

 

5

可编程

PendSV

可挂起的系统服务

0X0000 0038

 

6

可编程

SysTick

系统嘀嗒定时器

0X0000 003C

0

7

可编程

-

窗口看门狗中断

0X0000 0040

1

8

可编程

PVD

连接EXTI 线的可编程电压检测中断

0X0000 0044

2

9

可编程

TAMP_STAMP

连接EXTI 线的入侵和时间戳中断

0X0000 0048

中间部分省略,详情请参考《STM32F4xx 中文参考手册》第十章-中断和事件-向量表部分

84

91

可编程

SPI4

SPI4全局中断

0X0000 0190

85

92

可编程

SPI5

SPI5全局中断

0X0000 0194

86

93

可编程

SPI6

SPI6全局中断

0X0000 0198

87

94

可编程

SAI1

SAI1全局中断

0X0000 019C

88

95

可编程

LTDC

LTDC全局中断

0X0000 01A0

89

96

可编程

LTDC_ER

LTDC_ER全局中断

0X0000 01A4

90

97

可编程

DMA2D

DMA2D全局中断

0X0000 01A8

 __Vectors  DCD   __initial_sp        ;栈顶地址DCD   Reset_Handler       ;复位程序地址DCD   NMI_HandlerDCD   HardFault_HandlerDCD   MemManage_HandlerDCD   BusFault_HandlerDCD   UsageFault_HandlerDCD               0                    ; 0 表示保留DCD               0DCD               0DCD               0DCD   SVC_HandlerDCD   DebugMon_HandlerDCD               0DCD   PendSV_HandlerDCD   SysTick_Handler;外部中断开始DCD   WWDG_IRQHandlerDCD   PVD_IRQHandlerDCD   TAMP_STAMP_IRQHandler;限于篇幅,中间代码省略DCD   LTDC_IRQHandlerDCD   LTDC_ER_IRQHandlerDCD   DMA2D_IRQHandler__Vectors_End__Vectors_Size EQU __Vectors_End - __Vectors

__Vectors为向量表起始地址,__Vectors_End 为向量表结束地址,两个相减即可算出向量表大小。

向量表从FLASH的0地址开始放置,以4个字节为一个单位,地址0存放的是栈顶地址,0X04存放的是复位程序的地址,以此类推。从代码上看,向量表中存放的都是中断服务函数的函数名,可我们知道C语言中的函数名就是一个地址。

DCD:分配一个或者多个以字为单位的内存,以四字节对齐,并要求初始化这些内存。在向量表中,DCD分配了一堆内存,并且以ESR的入口地址初始化它们。

4.    复位程序

 AREA    |.text|, CODE, READONLY定义一个名称为.text的代码段,可读。Reset_Handler PROCEXPORT  Reset_Handler    [WEAK]IMPORT  SystemInitIMPORT  __mainLDR R0, =SystemInitBLX R0LDR R0, =__mainBX  R0ENDP

复位子程序是系统上电后第一个执行的程序,调用SystemInit函数初始化系统时钟,然后调用C库函数_mian,最终调用main函数去到C的世界。

WEAK:表示弱定义,如果外部文件优先定义了该标号则首先引用该标号,如果外部文件没有声明也不会出错。这里表示复位子程序可以由用户在其他文件重新实现,这里并不是唯一的。

IMPORT:表示该标号来自外部文件,跟C语言中的EXTERN关键字类似。这里表示SystemInit和__main这两个函数均来自外部的文件。

SystemInit()是一个标准的库函数,在system_stm32f4xx.c这个库文件总定义。主要作用是配置系统时钟,这里调用这个函数之后,F429的系统时钟配被配置为180M。

__main是一个标准的C库函数,主要作用是初始化用户堆栈,最终调用main函数去到C的世界。这就是为什么我们写的程序都有一个main函数的原因。如果我们在这里不调用__main,那么程序最终就不会调用我们C文件里面的main,如果是调皮的用户就可以修改主函数的名称,然后在这里面IMPORT你写的主函数名称即可。

 Reset_Handler PROCEXPORT  Reset_Handler    [WEAK]IMPORT  SystemInitIMPORT  user_mainLDR R0, =SystemInitBLX R0LDR R0, =user_mainBX  R0ENDP

这个时候你在C文件里面写的主函数名称就不是main了,而是user_main了。

LDR、BLX、BX是CM4内核的指令,可在《CM3权威指南CnR2》第四章-指令集里面查询到,具体作用见下表:

指令名称

作用

LDR

从存储器中加载字到一个寄存器中

BL

跳转到由寄存器/标号给出的地址,并把跳转前的下条指令地址保存到LR

BLX

跳转到由寄存器给出的地址,并根据寄存器的LSE确定处理器的状态,还要把跳转前的下条指令地址保存到LR

BX

跳转到由寄存器/标号给出的地址,不用返回

5.    中断服务程序

在启动文件里面已经帮我们写好所有中断的中断服务函数,跟我们平时写的中断服务函数不一样的就是这些函数都是空的,真正的中断复服务程序需要我们在外部的C文件里面重新实现,这里只是提前占了一个位置而已。

如果我们在使用某个外设的时候,开启了某个中断,但是又忘记编写配套的中断服务程序或者函数名写错,那当中断来临的时,程序就会跳转到启动文件预先写好的空的中断服务程序中,并且在这个空函数中无线循环,即程序就死在这里。

 NMI_Handler     PROC    ;系统异常EXPORT  NMI_Handler           [WEAK]B       .ENDP;限于篇幅,中间代码省略SysTick_Handler PROCEXPORT  SysTick_Handler       [WEAK]B       .ENDPDefault_Handler PROC    ;外部中断EXPORT  WWDG_IRQHandler       [WEAK]EXPORT  PVD_IRQHandler        [WEAK]EXPORT  TAMP_STAMP_IRQHandler [WEAK];限于篇幅,中间代码省略LTDC_IRQHandlerLTDC_ER_IRQHandlerDMA2D_IRQHandlerB       .ENDP

B:跳转到一个标号。这里跳转到一个'.',即表示无线循环。

6.    用户堆栈初始化

 1 ALIGN 

ALIGN:对指令或者数据存放的地址进行对齐,后面会跟一个立即数。缺省表示4字节对齐。

;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************IF      :DEF:__MICROLIBEXPORT  __initial_spEXPORT  __heap_baseEXPORT  __heap_limitELSEIMPORT  __use_two_region_memoryEXPORT  __user_initial_stackheap__user_initial_stackheapLDR     R0, =  Heap_MemLDR     R1, =(Stack_Mem + Stack_Size)LDR     R2, = (Heap_Mem +  Heap_Size)LDR     R3, = Stack_MemBX      LRALIGNENDIFEND

判断是否定义了__MICROLIB ,如果定义了则赋予标号__initial_sp(栈顶地址)、__heap_base(堆起始地址)、__heap_limit(堆结束地址)全局属性,可供外部文件调用。如果没有定义(实际的情况就是我们没定义__MICROLIB)则使用默认的C库,然后初始化用户堆栈大小,这部分有C库函数__main来完成,当初始化完堆栈之后,就调用main函数去到C的世界。

IF,ELSE,ENDIF:汇编的条件分支语句,跟C语言的if ,else类似

END:文件结束

四、系统启动流程

下面这段话引用自《CM3权威指南CnR2》3.8—复位序列,CM4的复位序列跟CM3一样。

在离开复位状态后, CM3 做的第一件事就是读取下列两个 32 位整数的值:

1、从地址 0x0000,0000 处取出 MSP 的初始值。

2、从地址 0x0000,0004 处取出 PC 的初始值——这个值是复位向量, LSB 必须是 1。 然后从这个值所对应的地址处取指。

图 142 复位序列

请注意,这与传统的 ARM 架构不同——其实也和绝大多数的其它单片机不同。传统的 ARM 架构总是从 0 地址开始执行第一条指令。它们的 0 地址处总是一条跳转指令。在 CM3 中,在 0 地址处提供 MSP 的初始值,然后紧跟着就是向量表。向量表中的数值是 32 位的地址,而不是跳转指令。向量表的第一个条目指向复位后应执行的第一条指令,就是我们刚刚分析的Reset_Handler这个函数。

图 143 初始化MSP和PC的一个范例

因为 CM3 使用的是向下生长的满栈,所以 MSP 的初始值必须是堆栈内存的末地址加 1。举例来说,如果我们的堆栈区域在 0x20007C00-0x20007FFF 之间,那么 MSP 的初始值就必须是 0x20008000。

向量表跟随在 MSP 的初始值之后——也就是第 2 个表目。要注意因为 CM3 是在 Thumb 态下执行,所以向量表中的每个数值都必须把 LSB 置 1(也就是奇数)。正是因为这个原因,图 143中使用0x101 来表达地址 0x100。当 0x100 处的指令得到执行后,就正式开始了程序的执行(即去到C的世界)。在此之前初始化 MSP 是必需的,因为可能第 1 条指令还没来得及执行,就发生了 NMI 或是其它 fault。 MSP 初始化好后就已经为它们的服务例程准备好了堆栈。

CM3启动汇编文件详解相关推荐

  1. ARM(IMX6U)裸机之I.MX6ULL启动头文件详解(内部BOOT ROM、IVT + Boot data + DCD + led.bin)

    参考:Linux之ARM(IMX6U)裸机之I.MX6ULL镜像烧写以及启动头文件的详解 作者:一只青木呀 发布时间: 2020-08-09 17:10:00 网址:https://blog.csdn ...

  2. STM32启动文件详解-比较清晰的一篇

    STM32启动文件详解 启动文件使用的 ARM 汇编指令汇总 启动程序源码注释(点此下载) 1. Stack-栈 Stack_Size EQU 0x00000400AREA STACK, NOINIT ...

  3. STM32(Cortex-M3)启动过程+IAR中xcl及icf文件详解

    一:STM32(Cortex-M3)启动过程(入口地址) ARM7和ARM9启动时从绝对地址0X00000000开始执行复位中断程序,即固定了复位后的起始地址,但中断向量表的位置是可变的. Corte ...

  4. Linux配置启动挂载:fstab文件详解

    Linux配置启动挂载:fstab文件详解 [日期:2014-12-23] 来源:Linux社区 作者:aceking10 [字体:大 中 小] fstab文件介绍 fstab文件包含了你的电脑上的存 ...

  5. uboot启动第一阶段详解——汇编代码部分start.S

    前言 uboot启动第一阶段是用汇编语言实现的,大部分都是Soc内部的初始化,可以理解成一些通用的初始化,只要使用该款Soc,第一阶段的初始化流程基本是一样的.不直接用C语言进行初始化是因为,C语言运 ...

  6. 【转载】CodeWarrior IDE使用tips之prm链接文件详解(自定义存储器分区以及自定义RAM数据初始化与在RAM中运行函数)...

    CodeWarrior IDE使用tips之prm链接文件详解(自定义存储器分区以及自定义RAM数据初始化与在RAM中运行函数) 2017-08-19 胡恩伟 汽车电子expert成长之路 内容提要 ...

  7. UCOSII 移植文件详解——笔记

    1.滴答定时器 SysTick 滴答定时器是一个24位的倒计数定时器,当计数到0时,将从RELOAD寄存器中自动重装载定时器初值,只要不关闭SysTick使能位,就将永久不息. SysTick的最大使 ...

  8. Linux中/proc目录下文件详解

    Linux中/proc目录下文件详解(一) 声明:可以自由转载本文,但请务必保留本文的完整性. 作者:张子坚 email:zhangzijian@163.com 说明:本文所涉及示例均在fedora ...

  9. Android - Manifest 文件 详解

    Manifest 文件 详解 本文地址: http://blog.csdn.net/caroline_wendy/article/details/20899281 Manifest可以定义应用程序及其 ...

最新文章

  1. 华为机考HJ2计算字符个数
  2. PHP iconv()函数转字符编码的问题(转)
  3. 13KB的代码能做什么?有些人可是弄出了一个完整的游戏!
  4. mongodb幽灵操作的解决方案
  5. Python一直报错:SyntaxError: invalid syntax 的原因及解决办法
  6. 七款最常用的PHP本地服务器
  7. 常用机器学习算法优缺点及其应用领域
  8. SpringBoot增和MongoDB实现增删改查、复合查询
  9. java manualbuffer_java从很大的buffer数组中每次读128字节 读到最后不足128字节的用0xff补齐 这个代码怎么写 ?没有思路哎...
  10. CSS:display和visibility隐藏的区别
  11. 微软MSDN原版所有系统合集我告诉你,Windows历史操作系统索引
  12. ISO27001认证办理流程及2022年补贴政策汇总
  13. Linux虚拟机修改主机名称,设置域名
  14. 使用阿里云的身份证实名认证接口
  15. 数据仓库架构演进与菜鸟实时数据仓库设计
  16. 两个苹果手机共享步数_实测:iPhone上“微信运动”步数可以作弊
  17. word恢复到安装时的状态?
  18. java 电商锁库存实现_电商项目扣减库存方案
  19. c语言(15 5)是多少,试题五(共 15分) 阅读以下关于 C语言及 C代码的叙述,回答问题 1至..._考试资料网...
  20. U盘安装Linux系统教程步骤

热门文章

  1. 关于SASE与安全市场的那些事
  2. 计算机网络网络层——学习笔记
  3. 研究生科研素养提升的测试题
  4. 如何建立企业级数据分析能力?
  5. php guzzlehttp,PHP HTTP客户端-Guzzle原理解析
  6. 360度全景标定方法_一种360度全视角鸟瞰全景行车辅助标定方法与流程
  7. java poi 追加_使用POI 向Excel中追加数据
  8. 一则假新闻挑起卡塔尔断交危机?FBI:都怪俄黑客
  9. Jpress项目学习纪录片(一) -- 环境搭建
  10. Date时间里的GMT是什么意思