可以通过perf list命令来查看系统中的hardware event:

# simpleperf list hw
List of hardware events:cpu-cyclesinstructionscache-referencescache-missesbranch-misses

还有hardware-cache event:

# simpleperf list cache
List of hw-cache events:L1-dcache-loadsL1-dcache-load-missesL1-dcache-storesL1-dcache-store-missesbranch-loadsbranch-load-missesbranch-storesbranch-store-misses

1、原理介绍:

1.1、hardware pmu

PMU(Performance Monitor Unit)本来指的就是硬件上的性能监控计数器(counter)。因为软件trace方法存在制约制约:1、软件大部分是插桩法,对于没有插桩的地方缺乏监控;2、软件使用hrtimer的采样法开销较大,而且不精确。所以使用硬件采样来trace是一个很好的补充。

可以看到arm64的hardware pmu可以监控:cpu-cycles、instructions、cache-references、cache-misses、branch-misses、cache相关事件等等。它的监控原理比较简单:每个cpu有几个counter,counter 0固定只能配置成cpu-cycles,其他counter可以配置成支持的任意类型。当counter的计数达到我们配置的值后,产生中断,在中断中记录当前的pc等现场信息(sample数据)和累加counter计数(count数据)。

我们可以利用pmu来做以下分析,例如:

  • 使用“instructions”每1000 instr采样一次,统计采样pc出现概率最大的函数,这样能找到当前的计算热点;
  • 使用“cache-misses”每10 miss采样一次,统计排序,找出“cache-misses”的热点;

arm64v3每个cpu支持7个counter,counter可配置的类型如下:

  • hw event。arm64支持的类型:
/* PMUv3 HW events mapping. */
const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {PERF_MAP_ALL_UNSUPPORTED,[PERF_COUNT_HW_CPU_CYCLES]      = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,[PERF_COUNT_HW_INSTRUCTIONS]        = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,[PERF_COUNT_HW_CACHE_REFERENCES]    = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,[PERF_COUNT_HW_CACHE_MISSES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,[PERF_COUNT_HW_BRANCH_MISSES]       = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
};

arm hw event的全集:

/** Generalized performance event event_id types, used by the* attr.event_id parameter of the sys_perf_event_open()* syscall:*/
enum perf_hw_id {/** Common hardware events, generalized by the kernel:*/PERF_COUNT_HW_CPU_CYCLES        = 0,PERF_COUNT_HW_INSTRUCTIONS      = 1,PERF_COUNT_HW_CACHE_REFERENCES      = 2,PERF_COUNT_HW_CACHE_MISSES      = 3,PERF_COUNT_HW_BRANCH_INSTRUCTIONS   = 4,PERF_COUNT_HW_BRANCH_MISSES     = 5,PERF_COUNT_HW_BUS_CYCLES        = 6,PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,PERF_COUNT_HW_REF_CPU_CYCLES        = 9,PERF_COUNT_HW_MAX,          /* non-ABI */
};
  • hw-cache event。三维数组,arm64支持的类型:
const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX] = {PERF_CACHE_MAP_ALL_UNSUPPORTED,[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,[C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,[C(BPU)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
};

arm hw-cache event的全集三维数组:

/** Generalized hardware cache events:**       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x*       { read, write, prefetch } x*       { accesses, misses }*/
enum perf_hw_cache_id {PERF_COUNT_HW_CACHE_L1D         = 0,PERF_COUNT_HW_CACHE_L1I         = 1,PERF_COUNT_HW_CACHE_LL          = 2,PERF_COUNT_HW_CACHE_DTLB        = 3,PERF_COUNT_HW_CACHE_ITLB        = 4,PERF_COUNT_HW_CACHE_BPU         = 5,PERF_COUNT_HW_CACHE_NODE        = 6,PERF_COUNT_HW_CACHE_MAX,        /* non-ABI */
};enum perf_hw_cache_op_id {PERF_COUNT_HW_CACHE_OP_READ     = 0,PERF_COUNT_HW_CACHE_OP_WRITE        = 1,PERF_COUNT_HW_CACHE_OP_PREFETCH     = 2,PERF_COUNT_HW_CACHE_OP_MAX,     /* non-ABI */
};enum perf_hw_cache_op_result_id {PERF_COUNT_HW_CACHE_RESULT_ACCESS   = 0,PERF_COUNT_HW_CACHE_RESULT_MISS     = 1,PERF_COUNT_HW_CACHE_RESULT_MAX,     /* non-ABI */
};

x86系列pmu支持的监控类型更加丰富。

1.2、pmu init

在dts文件中定义了pmu的类型:

    cpu_pmu: cpu-pmu {compatible = "arm,armv8-pmuv3";qcom,irq-is-percpu;interrupts = <1 6 4>;};

对应的驱动在drivers/perf/perf_event_armv8.c:

static const struct of_device_id armv8_pmu_of_device_ids[] = {{.compatible = "arm,armv8-pmuv3",   .data = armv8_pmuv3_init},{.compatible = "arm,cortex-a53-pmu",    .data = armv8_a53_pmu_init},{.compatible = "arm,cortex-a57-pmu",    .data = armv8_a57_pmu_init},
#ifdef CONFIG_ARCH_MSM8996{.compatible = "qcom,kryo-pmuv3", .data = kryo_pmu_init},
#endif{},
};static struct platform_driver armv8_pmu_driver = {.driver     = {.name   = "armv8-pmu",.of_match_table = armv8_pmu_of_device_ids,},.probe      = armv8_pmu_device_probe,
};

我们分析它的初始化函数armv8_pmu_device_probe():

static int armv8_pmu_device_probe(struct platform_device *pdev)
{return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
}↓int arm_pmu_device_probe(struct platform_device *pdev,const struct of_device_id *of_table,const struct pmu_probe_info *probe_table)
{const struct of_device_id *of_id;const int (*init_fn)(struct arm_pmu *);struct device_node *node = pdev->dev.of_node;struct arm_pmu *pmu;int ret = -ENODEV;/* (1) 初始化arm_pmu结构,其中arm_pmu->pmu成员是标准的pmu结构 */pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);if (!pmu) {pr_info("failed to allocate PMU device!\n");return -ENOMEM;}/* (2) 初始化标准pmu结构:arm_pmu->pmu */armpmu_init(pmu);if (!__oprofile_cpu_pmu)__oprofile_cpu_pmu = pmu;pmu->plat_device = pdev;/* (3) arm_pmu通用部分的初始化 */ret = cpu_pmu_init(pmu);if (ret)goto out_free;/* (4) arm_pmu自定义部分的初始化, "arm,armv8-pmuv3",对应init_fn = armv8_pmuv3_init*/if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {init_fn = of_id->data;pmu->secure_access = of_property_read_bool(pdev->dev.of_node,"secure-reg-access");/* arm64 systems boot only as non-secure */if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {pr_warn("ignoring \"secure-reg-access\" property for arm64\n");pmu->secure_access = false;}ret = of_pmu_irq_cfg(pmu);if (!ret)ret = init_fn(pmu);} else {ret = probe_current_pmu(pmu, probe_table);cpumask_setall(&pmu->supported_cpus);}if (ret) {pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));goto out_destroy;}/* (5) 注册标准的pmu */ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);if (ret)goto out_destroy;pmu->pmu_state  = ARM_PMU_STATE_OFF;pmu->percpu_irq = -1;pr_info("enabled with %s PMU driver, %d counters available\n",pmu->name, pmu->num_events);return 0;out_destroy:cpu_pmu_destroy(pmu);
out_free:pr_info("%s: failed to register PMU devices!\n",of_node_full_name(node));kfree(pmu);return ret;
}

armpmu_init()初始化标准pmu结构:

static void armpmu_init(struct arm_pmu *armpmu)
{atomic_set(&armpmu->active_events, 0);mutex_init(&armpmu->reserve_mutex);/* (2.1) 标准pmu的初始赋值 */armpmu->pmu = (struct pmu) {.pmu_enable = armpmu_enable,.pmu_disable    = armpmu_disable,.event_init = armpmu_event_init,.add        = armpmu_add,.del        = armpmu_del,.start      = armpmu_start,.stop       = armpmu_stop,.read       = armpmu_read,.filter_match   = armpmu_filter_match,.events_across_hotplug = 1,};
}

cpu_pmu_init()初始化arm_pmu结构的通用部分:

static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
{int err;int cpu;struct pmu_hw_events __percpu *cpu_hw_events;/* (3.1) 分配per_cpu的pmu_hw_events结构hw pmu在每个cpu上有7个hw counter, pmu_hw_events->used_mask中的每个bit代表对于counter是否被使用cpu_hw_events->events[]代表被使用counter对应的perf_event结构*/cpu_hw_events = alloc_percpu(struct pmu_hw_events);if (!cpu_hw_events)return -ENOMEM;/* (3.2) 注册arm_pmu对应的cpu hotplug回调 */cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;err = register_cpu_notifier(&cpu_pmu->hotplug_nb);if (err)goto out_hw_events;/* (3.3) 注册arm_pmu对应的pm回调 */err = cpu_pm_pmu_register(cpu_pmu);if (err)goto out_unregister;/* (3.4) 初始化分配的pmu_hw_events结构 */for_each_possible_cpu(cpu) {struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);raw_spin_lock_init(&events->pmu_lock);events->percpu_pmu = cpu_pmu;}/* (3.5) 初始化arm_pmu的部分成员 */cpu_pmu->hw_events  = cpu_hw_events;cpu_pmu->request_irq    = cpu_pmu_request_irq;cpu_pmu->free_irq   = cpu_pmu_free_irq;/* Ensure the PMU has sane values out of reset. *//* (3.6) 如果可能reset到确定值 */if (cpu_pmu->reset)on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,cpu_pmu, 1);/* If no interrupts available, set the corresponding capability flag *//* (3.7) 如果没有中断能力,不能上报sample数据 */if (!platform_get_irq(cpu_pmu->plat_device, 0))cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;return 0;out_unregister:unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
out_hw_events:free_percpu(cpu_hw_events);return err;
}

armv8_pmuv3_init()初始化arm_pmu结构的架构(arm64)相关部分:

static int armv8_pmuv3_init(struct arm_pmu *cpu_pmu)
{/* (4.1) arm_pmu结构中架构相关的成员赋值 */armv8_pmu_init(cpu_pmu);cpu_pmu->name           = "armv8_pmuv3";cpu_pmu->map_event      = armv8_pmuv3_map_event;/* (4.2) 重要:返回pmu可配置counter的个数*/return armv8pmu_probe_num_events(cpu_pmu);
}|→void armv8_pmu_init(struct arm_pmu *cpu_pmu)
{cpu_pmu->handle_irq     = armv8pmu_handle_irq,cpu_pmu->enable         = armv8pmu_enable_event,cpu_pmu->disable        = armv8pmu_disable_event,cpu_pmu->read_counter       = armv8pmu_read_counter,cpu_pmu->write_counter      = armv8pmu_write_counter,cpu_pmu->get_event_idx      = armv8pmu_get_event_idx,cpu_pmu->start          = armv8pmu_start,cpu_pmu->stop           = armv8pmu_stop,cpu_pmu->reset          = armv8pmu_reset,cpu_pmu->max_period     = (1LLU << 32) - 1,cpu_pmu->set_event_filter   = armv8pmu_set_event_filter;
}|→int armv8pmu_probe_num_events(struct arm_pmu *arm_pmu)
{int ret;struct arm_pmu_and_idle_nb *pmu_idle_nb;pmu_idle_nb = devm_kzalloc(&arm_pmu->plat_device->dev,sizeof(*pmu_idle_nb), GFP_KERNEL);if (!pmu_idle_nb)return -ENOMEM;pmu_idle_nb->cpu_pmu = arm_pmu;pmu_idle_nb->perf_cpu_idle_nb.notifier_call = perf_cpu_idle_notifier;idle_notifier_register(&pmu_idle_nb->perf_cpu_idle_nb);ret = smp_call_function_any(&arm_pmu->supported_cpus,armv8pmu_read_num_pmnc_events,&arm_pmu->num_events, 1);if (ret)idle_notifier_unregister(&pmu_idle_nb->perf_cpu_idle_nb);return ret;}||→static void armv8pmu_read_num_pmnc_events(void *info)
{int *nb_cnt = info;/* (4.2.1) 读寄存器,返回counter的个数 *//* Read the nb of CNTx counters supported from PMNC */*nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;/* (4.2.2) counter 0,固定为cpu cycles counter *//* Add the CPU cycles counter */*nb_cnt += 1;
}

2、event init

我们深入来看看标准pmu的event init函数:

static void armpmu_init(struct arm_pmu *armpmu)
{atomic_set(&armpmu->active_events, 0);mutex_init(&armpmu->reserve_mutex);armpmu->pmu = (struct pmu) {.pmu_enable = armpmu_enable,.pmu_disable    = armpmu_disable,.event_init = armpmu_event_init,.add        = armpmu_add,.del        = armpmu_del,.start      = armpmu_start,.stop       = armpmu_stop,.read       = armpmu_read,.filter_match   = armpmu_filter_match,.events_across_hotplug = 1,};
}↓static int armpmu_event_init(struct perf_event *event)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);int err = 0;atomic_t *active_events = &armpmu->active_events;/** Reject CPU-affine events for CPUs that are of a different class to* that which this PMU handles. Process-following events (where* event->cpu == -1) can be migrated between CPUs, and thus we have to* reject them later (in armpmu_add) if they're scheduled on a* different class of CPU.*//* (1) 判断event所绑定的cpu是否支持 */if (event->cpu != -1 &&!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))return -ENOENT;/* does not support taken branch sampling */if (has_branch_stack(event))return -EOPNOTSUPP;/* (2) 将event的type + config,映射成:PERF_TYPE_HARDWARE/PERF_TYPE_HW_CACHE/PERF_TYPE_RAW 调用的是armv8_pmuv3_map_event()函数*/if (armpmu->map_event(event) == -ENOENT)return -ENOENT;event->destroy = hw_perf_event_destroy;/* (3) 如果是event第一次绑定pmu,需要做一些初始化动作:比如注册中断*/if (!atomic_inc_not_zero(active_events)) {mutex_lock(&armpmu->reserve_mutex);if (atomic_read(active_events) == 0)err = armpmu_reserve_hardware(armpmu);if (!err)atomic_inc(active_events);mutex_unlock(&armpmu->reserve_mutex);}if (err)return err;/* (4) perf_event的一些初始化 */err = __hw_perf_event_init(event);if (err)hw_perf_event_destroy(event);return err;
}|→static int armv8_pmuv3_map_event(struct perf_event *event)
{return armpmu_map_event(event, &armv8_pmuv3_perf_map,&armv8_pmuv3_perf_cache_map,ARMV8_EVTYPE_EVENT);
}||→int
armpmu_map_event(struct perf_event *event,const unsigned (*event_map)[PERF_COUNT_HW_MAX],const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)
{u64 config = event->attr.config;int type = event->attr.type;/* (2.1) hardware pmu在perf_pmu_register()注册的时候,type=-1,所有它的type是动态分配的如果event的type = 动态分配的type,那么config就是raw类型的,不用映射,直接指定hardware counter的type*/if (type == event->pmu->type)return armpmu_map_raw_event(raw_event_mask, config);switch (type) {/* (2.2) HARDWARE type,对config进行映射转换 */case PERF_TYPE_HARDWARE:return armpmu_map_hw_event(event_map, config);/* (2.3) HW_CACHE type,对config进行映射转换 */case PERF_TYPE_HW_CACHE:return armpmu_map_cache_event(cache_map, config);/* (2.4) RAW type,对config进行映射转换 */case PERF_TYPE_RAW:return armpmu_map_raw_event(raw_event_mask, config);}return -ENOENT;
}|→static int
armpmu_reserve_hardware(struct arm_pmu *armpmu)
{/* (3.1) 实际调用的是cpu_pmu_request_irq()函数 */int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);if (err) {armpmu_release_hardware(armpmu);return err;}armpmu->pmu_state = ARM_PMU_STATE_RUNNING;return 0;
}||→static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
{int i, err, irq, irqs;struct platform_device *pmu_device = cpu_pmu->plat_device;struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;if (!pmu_device)return -ENODEV;/* (3.1.1) pmu支持中断的个数 */irqs = min(pmu_device->num_resources, num_possible_cpus());if (irqs < 1) {pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");return 0;}/* (3.1.2) 如果是per_cpu中断,从dts获得中断号并注册 */irq = platform_get_irq(pmu_device, 0);if (irq > 0 && irq_is_percpu(irq)) {err = request_percpu_irq(irq, handler, "arm-pmu",&hw_events->percpu_pmu);if (err) {pr_err("unable to request IRQ%d for ARM PMU counters\n",irq);return err;}on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);cpu_pmu->percpu_irq = irq;/* (3.1.3) 如果不是per_cpu中断,逐个从dts获得中断号并注册 */} else {for (i = 0; i < irqs; ++i) {int cpu = i;err = 0;irq = platform_get_irq(pmu_device, i);if (irq < 0)continue;if (cpu_pmu->irq_affinity)cpu = cpu_pmu->irq_affinity[i];/** If we have a single PMU interrupt that we can't shift,* assume that we're running on a uniprocessor machine and* continue. Otherwise, continue without this interrupt.*/if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",irq, cpu);continue;}err = request_irq(irq, handler,IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",per_cpu_ptr(&hw_events->percpu_pmu, cpu));if (err) {pr_err("unable to request IRQ%d for ARM PMU counters\n",irq);return err;}cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);}}return 0;
}|→static int
__hw_perf_event_init(struct perf_event *event)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;int mapping;/* (4.1) 再次调用映射转换,把config转换成counter的type 并且存储到hwc->config_base变量中*/mapping = armpmu->map_event(event);if (mapping < 0) {pr_debug("event %x:%llx not supported\n", event->attr.type,event->attr.config);return mapping;}/** We don't assign an index until we actually place the event onto* hardware. Use -1 to signify that we haven't decided where to put it* yet. For SMP systems, each core has it's own PMU so we can't do any* clever allocation or constraints checking at this point.*/hwc->idx        = -1;hwc->config_base    = 0;hwc->config     = 0;hwc->event_base     = 0;/** Check whether we need to exclude the counter from certain modes.*/if ((!armpmu->set_event_filter ||armpmu->set_event_filter(hwc, &event->attr)) &&event_requires_mode_exclusion(&event->attr)) {pr_debug("ARM performance counters do not support ""mode exclusion\n");return -EOPNOTSUPP;}/** Store the event encoding into the config_base field.*/hwc->config_base        |= (unsigned long)mapping;/* (4.2) 如果不需要提供sample数据,初始化period参数:sample_period、last_period、period_left*/if (!is_sampling_event(event)) {/** For non-sampling runs, limit the sample_period to half* of the counter width. That way, the new counter value* is far less likely to overtake the previous one unless* you have some serious IRQ latency issues.*/hwc->sample_period  = armpmu->max_period >> 1;hwc->last_period    = hwc->sample_period;local64_set(&hwc->period_left, hwc->sample_period);}if (event->group_leader != event) {if (validate_group(event) != 0)return -EINVAL;}return 0;
}

3、event add/del

在“perf_event内核框架”一章中已经阐明,task维度的perf_event需要和task一起调度,其回调函数最后控制的就是perf_event的启动和停止。

  • start函数调用路径:context_switch() -> finish_task_switch() -> perf_event_task_sched_in() -> __perf_event_task_sched_in() -> perf_event_context_sched_in() -> perf_event_sched_in() -> ctx_sched_in() -> ctx_pinned_sched_in()/ctx_flexible_sched_in() -> group_sched_in() -> event_sched_in() -> pmu->add(event, PERF_EF_START) -> xxx_add():

  • stop函数调用路径:context_switch() -> prepare_task_switch() -> perf_event_task_sched_out() -> __perf_event_task_sched_out() -> perf_event_context_sched_out() -> ctx_sched_out() -> group_sched_out() -> event_sched_out() -> pmu->del() -> xxx_del():

可以看到hw counter是非常珍贵的,arm64一个cpu上只有7个counter,而一个perf_event在一个cpu上运行时就需要消耗一个独立的hw counter。不像软件的pmu,多个perf_event可以以链表的形式无限的链接到同一个pmu数据源的per_cpu链表上。

我们具体看看hardware pmu的add和del函数的实现:

  • armpmu_add()。从本cpu的counters中分配空闲的counter,配置成perf_event指定的type,并且配置count指定多少count后中断,最后使能counter。
static int
armpmu_add(struct perf_event *event, int flags)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);struct hw_perf_event *hwc = &event->hw;int idx;int err = 0;/* An event following a process won't be stopped earlier */if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))return -ENOENT;/* (1) disable本cpu上所有的counter */perf_pmu_disable(event->pmu);/* If we don't have a space for the counter then finish early. *//* (2) 从本cpu上获取一个空闲的counter */idx = armpmu->get_event_idx(hw_events, event);if (idx < 0) {err = idx;goto out;}/** If there is an event in the counter we are going to use then make* sure it is disabled.*/event->hw.idx = idx;armpmu->disable(event);hw_events->events[idx] = event;hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;/* (3) 使能新分配的counter:把counter配置成perf_event需要的type并且配置period count,到期后会产生中断,在中断中上报数据并且重新配置period count*/if (flags & PERF_EF_START)armpmu_start(event, PERF_EF_RELOAD);/* Propagate our changes to the userspace mapping. */perf_event_update_userpage(event);out:/* (4) 重新使能本cpu上所有的counter */perf_pmu_enable(event->pmu);return err;
}|→void perf_pmu_disable(struct pmu *pmu)
{int *count = this_cpu_ptr(pmu->pmu_disable_count);if (!(*count)++)/* 调用armpmu_disable() */pmu->pmu_disable(pmu);
}||→static void armpmu_disable(struct pmu *pmu)
{struct arm_pmu *armpmu = to_arm_pmu(pmu);/* For task-bound events we may be called on other CPUs */if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))return;/* 调用armv8pmu_stop() */armpmu->stop(armpmu);
}|||→static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
{unsigned long flags;struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);raw_spin_lock_irqsave(&events->pmu_lock, flags);/* Disable all counters *//* (1.1) disable本cpu上所有的counter */armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}|→static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,struct perf_event *event)
{int idx;struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;unsigned long evtype = hwc->config_base & ARMV8_EVTYPE_EVENT;/* Place the first cycle counter request into the cycle counter. *//* (2.1) 如果需要cycles counter,先尝试counter 0 */if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))return ARMV8_IDX_CYCLE_COUNTER;}/** For anything other than a cycle counter, try and use* the events counters*//* (2.2) 否则从counter 1开始寻找空闲counter */for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {if (!test_and_set_bit(idx, cpuc->used_mask))return idx;}/* The counters are all in use. */return -EAGAIN;
}|→static void armpmu_start(struct perf_event *event, int flags)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;/** ARM pmu always has to reprogram the period, so ignore* PERF_EF_RELOAD, see the comment below.*/if (flags & PERF_EF_RELOAD)WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));hwc->state = 0;/** Set the period again. Some counters can't be stopped, so when we* were stopped we simply disabled the IRQ source and the counter* may have been left counting. If we don't do this step then we may* get an interrupt too soon or *way* too late if the overflow has* happened since disabling.*//* (3.1) 设置counter的中断次数 */armpmu_event_set_period(event);/* (3.2) 配置counter type,并且使能counter */armpmu->enable(event);
}||→int armpmu_event_set_period(struct perf_event *event)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;s64 left = local64_read(&hwc->period_left);s64 period = hwc->sample_period;int ret = 0;/* (3.1.1) left初始值为period,中断后:left -= delta ,如果上次实际发生中断的间隔delta准确等于period,left=0如果上次实际发生中断的间隔delta准确大于period,left<0如果上次实际发生中断的间隔delta准确大于2period,left <= -period,这种情况下没有补差的必要直接重新对其period*/if (unlikely(left <= -period)) {left = period;local64_set(&hwc->period_left, left);hwc->last_period = period;ret = 1;}/* (3.1.2) 如果上次实际发生中断的间隔delta准确等于period,left=0如果上次实际发生中断的间隔delta准确大于period,left<0如果上次实际发生中断的间隔delta准确大于2period,left <= -period如果上次实际发生中断的间隔delta准确大于period但是小于2period,尝试重新补差同步,*/if (unlikely(left <= 0)) {left += period;local64_set(&hwc->period_left, left);hwc->last_period = period;ret = 1;}/** Limit the maximum period to prevent the counter value* from overtaking the one we are about to program. In* effect we are reducing max_period to account for* interrupt latency (and we are being very conservative).*//* (3.1.3) left不能大于最大周期的1/2 */if (left > (armpmu->max_period >> 1))left = armpmu->max_period >> 1;/* (3.1.4) 配置prev_count为-left */local64_set(&hwc->prev_count, (u64)-left);/* (3.1.5) 配置counter为-left 当counter累加到0后产生中断*/armpmu->write_counter(event, (u64)(-left) & 0xffffffff);perf_event_update_userpage(event);return ret;
}|||→static inline void armv8pmu_write_counter(struct perf_event *event, u32 value)
{struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;int idx = hwc->idx;if (!armv8pmu_counter_valid(cpu_pmu, idx))pr_err("CPU%u writing wrong counter %d\n",smp_processor_id(), idx);/* (3.1.5.1) 默认就是counter 0,直接配置count */else if (idx == ARMV8_IDX_CYCLE_COUNTER)armv8pmu_pmccntr_write_reg(value);/* (3.1.5.2) 否则需要先选择counter编号,再配置count */else if (armv8pmu_select_counter(idx) == idx)armv8pmu_pmxevcntr_write_reg(value);
}||→static void armv8pmu_enable_event(struct perf_event *event)
{unsigned long flags;struct hw_perf_event *hwc = &event->hw;struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);int idx = hwc->idx;/** Enable counter and interrupt, and set the counter to count* the event that we're interested in.*/raw_spin_lock_irqsave(&events->pmu_lock, flags);/** Disable counter*//* (3.2.1) disable counter */armv8pmu_disable_counter(idx);/** Set event (if destined for PMNx counters).*//* (3.2.2) 根据perf_event映射转换的type,配置counter的type */armv8pmu_write_evtype(idx, hwc->config_base);/** Enable interrupt for this counter*//* (3.2.3) enable counter的中断 */armv8pmu_enable_intens(idx);/** Enable counter*//* (3.2.4) enable counter */armv8pmu_enable_counter(idx);raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}|→void perf_pmu_enable(struct pmu *pmu)
{int *count = this_cpu_ptr(pmu->pmu_disable_count);if (!--(*count))pmu->pmu_enable(pmu);
}||→static void armpmu_enable(struct pmu *pmu)
{struct arm_pmu *armpmu = to_arm_pmu(pmu);struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);/* For task-bound events we may be called on other CPUs */if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))return;if (enabled)armpmu->start(armpmu);
}|||→static void armv8pmu_start(struct arm_pmu *cpu_pmu)
{unsigned long flags;struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);raw_spin_lock_irqsave(&events->pmu_lock, flags);/* Enable all counters *//* (4.1) 重新使能本cpu上所有的counter */armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
  • armpmu_del()。将event对应的counter停工,并且将counter归还给本cpu的空闲counter。
static void
armpmu_del(struct perf_event *event, int flags)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);struct hw_perf_event *hwc = &event->hw;int idx = hwc->idx;/* (1) 将event对应的counter停工 */armpmu_stop(event, PERF_EF_UPDATE);/* (2) 将counter归还给本cpu的空闲counter */hw_events->events[idx] = NULL;clear_bit(idx, hw_events->used_mask);if (armpmu->clear_event_idx)armpmu->clear_event_idx(hw_events, event);perf_event_update_userpage(event);
}

4、event 数据采集

hardware event是采样法,采样法都是依赖于中断实现的:

  • 配置counter的count,当count累加到0后,产生中断
  • arm64每个cpu上多个counter共享一个中断,所以中断处理函数中需要分发中断,查看到底是哪一个counter发生了overflow
  • 如果是某个counter发出的中断,给其对应的perf_event上报count数据和sample数据
  • 处理完所以事务后,重新配置counter的count,这样就会重复的产生周期性的采样

具体的中断处理函数如下:

static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
{struct arm_pmu *armpmu;struct platform_device *plat_device;struct arm_pmu_platdata *plat;int ret;u64 start_clock, finish_clock;/** we request the IRQ with a (possibly percpu) struct arm_pmu**, but* the handlers expect a struct arm_pmu*. The percpu_irq framework will* do any necessary shifting, we just need to perform the first* dereference.*/armpmu = *(void **)dev;plat_device = armpmu->plat_device;plat = dev_get_platdata(&plat_device->dev);start_clock = sched_clock();if (plat && plat->handle_irq)ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);else/* (1) 实际调用了armv8pmu_handle_irq() */ret = armpmu->handle_irq(irq, armpmu);finish_clock = sched_clock();perf_sample_event_took(finish_clock - start_clock);return ret;
}|→static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
{u32 pmovsr;struct perf_sample_data data;struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);struct pt_regs *regs;int idx;/** Get and reset the IRQ flags*/pmovsr = armv8pmu_getreset_flags();/** Did an overflow occur?*/if (!armv8pmu_has_overflowed(pmovsr))return IRQ_NONE;/** Handle the counter(s) overflow(s)*/regs = get_irq_regs();/* (1.1) 逐个轮询,是本cpu上的哪个counter产生的中断 */for (idx = 0; idx < cpu_pmu->num_events; ++idx) {struct perf_event *event = cpuc->events[idx];struct hw_perf_event *hwc;/* Ignore if we don't have an event. */if (!event)continue;/** We have a single interrupt for all counters. Check that* each counter has overflowed before we process it.*//* (1.1.1) 判断是否当前counter产生的中断 */if (!armv8pmu_counter_has_overflowed(pmovsr, idx))continue;hwc = &event->hw;/* (1.1.2) 计算counter的差值,并且更新perf_event的count值 */armpmu_event_update(event);perf_sample_data_init(&data, 0, hwc->last_period);/* (1.1.3) 重新配置中断周期 */if (!armpmu_event_set_period(event))continue;/* (1.1.4) 给对应perf_event上报sample数据 */if (perf_event_overflow(event, &data, regs))cpu_pmu->disable(event);}/** Handle the pending perf events.** Note: this call *must* be run with interrupts disabled. For* platforms that can have the PMU interrupts raised as an NMI, this* will not work.*//* (1.2) 处理irq_work_queue()压入的任务 */irq_work_run();return IRQ_HANDLED;
}||→u64 armpmu_event_update(struct perf_event *event)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;u64 delta, prev_raw_count, new_raw_count;again:prev_raw_count = local64_read(&hwc->prev_count);/* (1.1.2.1) 读取counter的当前count值 */new_raw_count = armpmu->read_counter(event);if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,new_raw_count) != prev_raw_count)goto again;/* (1.1.2.2) 计算和上一次的差值 */delta = (new_raw_count - prev_raw_count) & armpmu->max_period;/* (1.1.2.3) 把差值更新到perf_event的count中 */local64_add(delta, &event->count);/* (1.1.2.4) 把差值更新到left中 */local64_sub(delta, &hwc->period_left);return new_raw_count;
}

4.1、count数据

perf_event的count数据,除了在上一节的中断中更新,在read操作读取时也会更新最新的count。

perf_read() -> __perf_read() -> perf_read_one() -> perf_event_read_value() -> perf_event_read() -> __perf_event_read():

static void __perf_event_read(void *info)
{struct perf_read_data *data = info;struct perf_event *sub, *event = data->event;struct perf_event_context *ctx = event->ctx;struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);struct pmu *pmu = event->pmu;/** If this is a task context, we need to check whether it is* the current task context of this cpu.  If not it has been* scheduled out before the smp call arrived.  In that case* event->count would have been updated to a recent sample* when the event was scheduled out.*/if (ctx->task && cpuctx->task_ctx != ctx)return;raw_spin_lock(&ctx->lock);if (ctx->is_active) {update_context_time(ctx);update_cgrp_time_from_event(event);}update_event_times(event);if (event->state != PERF_EVENT_STATE_ACTIVE)goto unlock;if (!data->group) {/* (1) 调用pmu->read()函数更新最新的count值 如果是hardware pmu实际调用到armpmu_read()*/pmu->read(event);data->ret = 0;goto unlock;}pmu->start_txn(pmu, PERF_PMU_TXN_READ);pmu->read(event);list_for_each_entry(sub, &event->sibling_list, group_entry) {update_event_times(sub);if (sub->state == PERF_EVENT_STATE_ACTIVE) {/** Use sibling's PMU rather than @event's since* sibling could be on different (eg: software) PMU.*/sub->pmu->read(sub);}}data->ret = pmu->commit_txn(pmu);unlock:raw_spin_unlock(&ctx->lock);
}↓static void
armpmu_read(struct perf_event *event)
{armpmu_event_update(event);
}↓u64 armpmu_event_update(struct perf_event *event)
{struct arm_pmu *armpmu = to_arm_pmu(event->pmu);struct hw_perf_event *hwc = &event->hw;u64 delta, prev_raw_count, new_raw_count;again:prev_raw_count = local64_read(&hwc->prev_count);new_raw_count = armpmu->read_counter(event);if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,new_raw_count) != prev_raw_count)goto again;delta = (new_raw_count - prev_raw_count) & armpmu->max_period;local64_add(delta, &event->count);local64_sub(delta, &hwc->period_left);return new_raw_count;
}

4.2、sample数据

在中断中定期的上报sample数据:

static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
{for (idx = 0; idx < cpu_pmu->num_events; ++idx) {struct perf_event *event = cpuc->events[idx];struct hw_perf_event *hwc;/* Ignore if we don't have an event. */if (!event)continue;/** We have a single interrupt for all counters. Check that* each counter has overflowed before we process it.*/if (!armv8pmu_counter_has_overflowed(pmovsr, idx))continue;hwc = &event->hw;armpmu_event_update(event);perf_sample_data_init(&data, 0, hwc->last_period);if (!armpmu_event_set_period(event))continue;if (perf_event_overflow(event, &data, regs))cpu_pmu->disable(event);}}↓int perf_event_overflow(struct perf_event *event,struct perf_sample_data *data,struct pt_regs *regs)
{return __perf_event_overflow(event, 1, data, regs);
}

Linux perf 1.4、hardware events相关推荐

  1. 【Qt开发】【VS开发】【Linux开发】OpenCV、Qt-MinGw、Qt-msvc、VS2010、VS2015、Ubuntu Linux、ARM Linux中几个特别容易混淆的内容...

    [Qt开发][VS开发][Linux开发]OpenCV.Qt-MinGw.Qt-msvc.VS2010.VS2015.Ubuntu Linux.ARM Linux中几个特别容易混淆的内容 标签:[Qt ...

  2. java火焰_使用linux perf工具生成java程序火焰图

    Java FlameGraph(火焰图)能够非常直观的展示java程序的性能分析结果,方便发现程序热点和进一步调优.本文将展示如何使用linux perf工具生成java程序的火焰图.火焰图大致长这个 ...

  3. 鸟哥的Linux私房菜-第一、二、三章

    鸟哥的Linux私房菜-第一.二.三章 前言 第一章.Linux是什么与如何学习 第二章.主机规划与磁盘分区 第三章.安装 CentOS7.x 前言   这本书很有意思,但是有作者提到很多题外话,看起 ...

  4. Linux系统与网络、磁盘参数和日志监控等命令详解二

    创作人QQ:851301776,邮箱:lfr890207@163.com, 欢迎大家一起技术交流,本博客主要是自己学习的心得体会,只为每天进步一点点! 个人座右铭: 1.没有横空出世,只要厚积一定发. ...

  5. 电子书:《Linux Perf Master》

    电子书:<Linux Perf Master> <The Linux Perf Master>(暂用名) 是一本关于开源软件的电子书.本书与常见的专题类书籍不同,作者以应用性能 ...

  6. Linux之远程登录、远程拷贝命令 ssh scp

    Linux之远程登录.远程拷贝命令 ssh scp 1. 远程登录.远程拷贝命令的介绍 命令 说明 ssh 远程登录 scp 远程拷贝 2. ssh命令的使用 ssh是专门为远程登录提供的一个安全性协 ...

  7. linux查看内核版本、系统版本、系统位数(32or64)

    为什么80%的码农都做不了架构师?>>>    1. 查看内核版本命令: 1) [root@q1test01 ~]# cat /proc/version    Linux versi ...

  8. Linux中的configure、pkg-config、pkg_config_path和安装中的PKG_CONFIG_PATH问题 pkgconfig

    Linux中的configure.pkg-config.pkg_config_path 提到这三个名词我相信搞Linux的人一定不会陌生,重要性不言而喻,下面我就要总结下三者之间的关系. config ...

  9. 从需求的角度去理解Linux系列:总线、设备和驱动

    <从需求的角度去理解Linux系列:总线.设备和驱动>是一篇有关如何学习嵌入式Linux系统的方法论文章,也是从需求的角度去理解Linux系统软件的开篇.这是作者精心撰写的经验总结,希望嵌 ...

最新文章

  1. 第七届蓝桥杯决赛真题 - 凑平方数-全排列+dfs+set去重
  2. linux适应环境,Linux从入门到适应(一):VSCode C++环境配置
  3. 一个牛人在美国的跳槽经历(有感)
  4. 插入移动硬盘_Win10插入移动硬盘或U盘有提示声但电脑中不显示的解决方法
  5. 26个适用于VMware管理员的强大工具,收藏了!
  6. java 定时任务spring_Spring实现定时任务调度
  7. 机器学习实战——岭回归、缩减法
  8. Linux内核多线程实现方法 —— kthread_create函数【转】
  9. android日记论文摘要,毕业设计(论文)-基于android的日记本的设计与开发.doc
  10. 14款实用项目管理工具,精英必备!
  11. ◮OpenGL-抗锯齿
  12. 反其道而行 - 登录gitbub
  13. foo, bar ,baz
  14. 使用苹果手机/PAD做树莓派的外接屏幕
  15. 华为防火墙应用层过滤--URL
  16. mysql 数据库第二次安装不了_mysql数据库二次安装无法启动
  17. 你手上的职称证书或许不被承认,级别再高也没用
  18. Deep Nets Sublinear Memory Cost 笔记
  19. java replace无效_Java String.replace()方法无效的原因及解决方式
  20. 高二会考计算机分数,高二会考多少分才能通过

热门文章

  1. JDO持久框架——DataNucles
  2. ARM CORTEX-M3 内核架构理解归纳
  3. Pytorch 小白记事本 1
  4. 某图书管理系统的类图
  5. linux jnlp显示异常,Web启动异常 JNLP
  6. 捷信Q1经营大幅下滑,净利润0.3亿元,不良率走高
  7. java就是我的幸福,关于幸福的句子经典
  8. 网络与分布式计算复习
  9. slqdbx mysql_免费的多数据库管理工具sqldbx个人版本
  10. [POJ1187] 陨石的秘密