参数初始化(Weight Initialization)

PyTorch 中参数的默认初始化在各个层的 reset_parameters() 方法中。例如:nn.Linear 和 nn.Conv2D,都是在 [-limit, limit] 之间的均匀分布(Uniform distribution),其中 limit 是 1. / sqrt(fan_in) ,fan_in 是指参数张量(tensor)的输入单元的数量

下面是几种常见的初始化方式。

Xavier Initialization

Xavier初始化的基本思想是保持输入和输出的方差一致,这样就避免了所有输出值都趋向于0。这是通用的方法,适用于任何激活函数。

# 默认方法
for m in model.modules():if isinstance(m, (nn.Conv2d, nn.Linear)):nn.init.xavier_uniform_(m.weight)

也可以使用 gain 参数来自定义初始化的标准差来匹配特定的激活函数:

for m in model.modules():if isinstance(m, (nn.Conv2d, nn.Linear)):nn.init.xavier_uniform_(m.weight(), gain=nn.init.calculate_gain('relu'))

参考资料:

  • Understanding the difficulty of training deep feedforward neural networks

He et. al Initialization

torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

He initialization的思想是:在ReLU网络中,假定每一层有一半的神经元被激活,另一半为0。推荐在ReLU网络中使用。

# he initialization
for m in model.modules():if isinstance(m, (nn.Conv2d, nn.Linear)):nn.init.kaiming_normal_(m.weight, mode='fan_in')

正交初始化(Orthogonal Initialization)

主要用以解决深度网络下的梯度消失、梯度爆炸问题,在RNN中经常使用的参数初始化方法。

for m in model.modules():if isinstance(m, (nn.Conv2d, nn.Linear)):nn.init.orthogonal(m.weight)

Batchnorm Initialization

在非线性激活函数之前,我们想让输出值有比较好的分布(例如高斯分布),以便于计算梯度和更新参数。Batch Normalization 将输出值强行做一次 Gaussian Normalization 和线性变换:

实现方法:

for m in model:if isinstance(m, nn.BatchNorm2d):nn.init.constant(m.weight, 1)nn.init.constant(m.bias, 0)

单层初始化

conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
nn.init.xavier_uniform(conv1.weight)
nn.init.constant(conv1.bias, 0.1)

模型初始化

def weights_init(m):classname = m.__class__.__name__if classname.find('Conv2d') != -1:nn.init.xavier_normal_(m.weight.data)nn.init.constant_(m.bias.data, 0.0)elif classname.find('Linear') != -1:nn.init.xavier_normal_(m.weight)nn.init.constant_(m.bias, 0.0)
net = Net()
net.apply(weights_init) #apply函数会递归地搜索网络内的所有module并把参数表示的函数应用到所有的module上。

不建议访问以下划线为前缀的成员,他们是内部的,如果有改变不会通知用户。更推荐的一种方法是检查某个module是否是某种类型:

def weights_init(m):if isinstance(m, (nn.Conv2d, nn.Linear)):nn.init.xavier_normal_(m.weight)nn.init.constant_(m.bias, 0.0)

各种初始化方法:

import torch
import torch.nn as nnw = torch.empty(2, 3)# 1. 均匀分布 - u(a,b)
# torch.nn.init.uniform_(tensor, a=0, b=1)
nn.init.uniform_(w)
# tensor([[ 0.0578,  0.3402,  0.5034],
#         [ 0.7865,  0.7280,  0.6269]])# 2. 正态分布 - N(mean, std)
# torch.nn.init.normal_(tensor, mean=0, std=1)
nn.init.normal_(w)
# tensor([[ 0.3326,  0.0171, -0.6745],
#        [ 0.1669,  0.1747,  0.0472]])# 3. 常数 - 固定值 val
# torch.nn.init.constant_(tensor, val)
nn.init.constant_(w, 0.3)
# tensor([[ 0.3000,  0.3000,  0.3000],
#         [ 0.3000,  0.3000,  0.3000]])# 4. 对角线为 1,其它为 0
# torch.nn.init.eye_(tensor)
nn.init.eye_(w)
# tensor([[ 1.,  0.,  0.],
#         [ 0.,  1.,  0.]])# 5. Dirac delta 函数初始化,仅适用于 {3, 4, 5}-维的 torch.Tensor
# torch.nn.init.dirac_(tensor)
w1 = torch.empty(3, 16, 5, 5)
nn.init.dirac_(w1)# 6. xavier_uniform 初始化
# torch.nn.init.xavier_uniform_(tensor, gain=1)
# From - Understanding the difficulty of training deep feedforward neural networks - Bengio 2010
nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
# tensor([[ 1.3374,  0.7932, -0.0891],
#         [-1.3363, -0.0206, -0.9346]])# 7. xavier_normal 初始化
# torch.nn.init.xavier_normal_(tensor, gain=1)
nn.init.xavier_normal_(w)
# tensor([[-0.1777,  0.6740,  0.1139],
#         [ 0.3018, -0.2443,  0.6824]])# 8. kaiming_uniform 初始化
# From - Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - HeKaiming 2015
# torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
# tensor([[ 0.6426, -0.9582, -1.1783],
#         [-0.0515, -0.4975,  1.3237]])# 9. kaiming_normal 初始化
# torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
# tensor([[ 0.2530, -0.4382,  1.5995],
#         [ 0.0544,  1.6392, -2.0752]])# 10. 正交矩阵 - (semi)orthogonal matrix
# From - Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe 2013
# torch.nn.init.orthogonal_(tensor, gain=1)
nn.init.orthogonal_(w)
# tensor([[ 0.5786, -0.5642, -0.5890],
#         [-0.7517, -0.0886, -0.6536]])# 11. 稀疏矩阵 - sparse matrix
# 非零元素采用正态分布 N(0, 0.01) 初始化.
# From - Deep learning via Hessian-free optimization - Martens 2010
# torch.nn.init.sparse_(tensor, sparsity, std=0.01)
nn.init.sparse_(w, sparsity=0.1)
# tensor(1.00000e-03 *
#        [[-0.3382,  1.9501, -1.7761],
#         [ 0.0000,  0.0000,  0.0000]])

Xavier均匀分布

torch.nn.init.xavier_uniform_(tensor, gain=1)
xavier初始化方法中服从均匀分布U(−a,a) ,分布的参数a = gain * sqrt(6/fan_in+fan_out),
这里有一个gain,增益的大小是依据激活函数类型来设定
eg:nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain(‘relu’))
PS:上述初始化方法,也称为Glorot initialization"""
torch.nn.init.xavier_uniform_(tensor, gain=1)
根据Glorot, X.和Bengio, Y.在“Understanding the dif×culty of training deep feedforward neural
networks”中描述的方法,用一个均匀分布生成值,填充输入的张量或变量。结果张量中的值
采样自U(-a, a),其中a= gain * sqrt( 2/(fan_in + fan_out))* sqrt(3). 该方法也被称为Glorot initialisat参数:
tensor – n维的torch.Tensor
gain - 可选的缩放因子
"""
import torch
from torch import nn
w=torch.Tensor(3,5)
nn.init.xavier_uniform_(w,gain=1)
print(w)

Xavier正态分布

torch.nn.init.xavier_normal_(tensor, gain=1)
xavier初始化方法中服从正态分布,
mean=0,std = gain * sqrt(2/fan_in + fan_out)kaiming初始化方法,论文在《 Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》,公式推导同样从“方差一致性”出法,kaiming是针对xavier初始化方法在relu这一类激活函数表现不佳而提出的改进,详细可以参看论文。"""
根据Glorot, X.和Bengio, Y. 于2010年在“Understanding the dif×culty of training deep
feedforward neural networks”中描述的方法,用一个正态分布生成值,填充输入的张量或变
量。结果张量中的值采样自均值为0,标准差为gain * sqrt(2/(fan_in + fan_out))的正态分布。
也被称为Glorot initialisation.
参数:
tensor – n维的torch.Tensor
gain - 可选的缩放因子
"""b=torch.Tensor(3,4)
nn.init.xavier_normal_(b, gain=1)
print(b)

kaiming均匀分布

torch.nn.init.kaiming_uniform_(tensor, a=0, mode=‘fan_in’, nonlinearity=‘leaky_relu’)
此为均匀分布,U~(-bound, bound), bound = sqrt(6/(1+a^2)*fan_in)
其中,a为激活函数的负半轴的斜率,relu是0
mode- 可选为fan_in 或 fan_out, fan_in使正向传播时,方差一致; fan_out使反向传播时,方差一致
nonlinearity- 可选 relu 和 leaky_relu ,默认值为 。 leaky_relu
nn.init.kaiming_uniform_(w, mode=‘fan_in’, nonlinearity=‘relu’)w=torch.Tensor(3,5)
nn.init.kaiming_uniform_(w,a=0,mode='fan_in')
print(w)

kaiming正态分布

torch.nn.init.kaiming_normal_(tensor, a=0, mode=‘fan_in’, nonlinearity=‘leaky_relu’)
此为0均值的正态分布,N~ (0,std),其中std = sqrt(2/(1+a^2)*fan_in)
其中,a为激活函数的负半轴的斜率,relu是0
mode- 可选为fan_in 或 fan_out, fan_in使正向传播时,方差一致;fan_out使反向传播时,方差一致
nonlinearity- 可选 relu 和 leaky_relu ,默认值为 。 leaky_relu
nn.init.kaiming_normal_(w, mode=‘fan_out’, nonlinearity=‘relu’)

2.其他

均匀分布初始化

torch.nn.init.uniform_(tensor, a=0, b=1)
使值服从均匀分布U(a,b)

tensor - n维的torch.Tensor
a - 均匀分布的下界
b - 均匀分布的上界

正态分布初始化

torch.nn.init.normal_(tensor, mean=0, std=1)
使值服从正态分布N(mean, std),默认值为0,1

tensor – n维的torch.Tensor
mean – 正态分布的均值
std – 正态分布的标准差

常数初始化

torch.nn.init.constant_(tensor, val)
使值为常数val nn.init.constant_(w, 0.3)

"""
torch.nn.init.constant(tensor, val)
用val的值填充输入的张量或变量
参数:
tensor – n维的torch.Tensor或autograd.Variable
val – 用来填充张量的值
"""
w=torch.Tensor(3,5)
nn.init.constant_(w,1.2)
print(w)
tensor([[1.2000, 1.2000, 1.2000, 1.2000, 1.2000],[1.2000, 1.2000, 1.2000, 1.2000, 1.2000],[1.2000, 1.2000, 1.2000, 1.2000, 1.2000]])

单位矩阵初始化

torch.nn.init.eye_(tensor)
将二维tensor初始化为单位矩阵(the identity matrix)

"""
torch.nn.init.eye(tensor)
用单位矩阵来填充2维输入张量或变量。在线性层尽可能多的保存输入特性。
参数:
tensor – 2维的torch.Tensor或autograd.Variable
"""
w=torch.Tensor(3,5)
nn.init.eye_(w)
print(w)
tensor([[1., 0., 0., 0., 0.],[0., 1., 0., 0., 0.],[0., 0., 1., 0., 0.]])

正交初始化

torch.nn.init.orthogonal_(tensor, gain=1)
使得tensor是正交的,论文:Exact solutions to the nonlinear dynamics of learning in deep linear neural networks” - Saxe, A. et al. (2013)

"""
torch.nn.init.orthogonal_(tensor, gain=1)
25 torch.nn.init - PyTorch中文文档
https://pytorch-cn.readthedocs.io/zh/latest/package_references/nn_init/ 5/5
用(半)正交矩阵填充输入的张量或变量。输入张量必须至少是2维的,对于更高维度的张
量,超出的维度会被展平,视作行等于第一个维度,列等于稀疏矩阵乘积的2维表示。其中非
零元素生成自均值为0,标准差为std的正态分布。参数:
tensor – n维的torch.Tensor或 autograd.Variable,其中n>=2
gain -可选
"""
w = torch.Tensor(3, 5)
nn.init.orthogonal_(w)
print(w)

稀疏初始化

torch.nn.init.sparse_(tensor, sparsity, std=0.01)
从正态分布N~(0. std)中进行稀疏化,使每一个column有一部分为0
sparsity- 每一个column稀疏的比例,即为0的比例_

sparsity - 每列中需要被设置成零的元素比例
std - 用于生成非零值的正态分布的标准差
nn.init.sparse_(w, sparsity=0.1)

w = torch.Tensor(3, 5)
nn.init.sparse_(w, sparsity=0.1)
print(w)tensor([[-0.0042,  0.0000,  0.0000, -0.0016,  0.0000],[ 0.0000,  0.0050,  0.0082,  0.0000,  0.0003],[ 0.0018, -0.0016, -0.0003, -0.0068,  0.0103]])

dirac

"""
torch.nn.init.dirac(tensor)
用Dirac 函数来填充{3, 4, 5}维输入张量或变量。在卷积层尽可能多的保存输入通道特性
参数:
tensor – {3, 4, 5}维的torch.Tensor或autograd.Variable
"""
w=torch.Tensor(3,16,5,5)
nn.init.dirac_(w)
print(w)w.sum()
tensor(3.)

计算增益calculate_gain

torch.nn.init.calculate_gain(nonlinearity, param=None)

torch.nn.init.calculate_gain(nonlinearity,param=None)
对于给定的非线性函数,返回推荐的增益值.
参数:
nonlinearity - 非线性函数( nn.functional 名称)
param - 非线性函数的可选参数from torch import nn
import torch
gain = nn.init.calculate_gain('leaky_relu')
print(gain)1.4141428569978354
nonlinearity gain
Linear / Identity 1
Conv{1,2,3}D 1
Sigmoid 1
Tanh 5/3
ReLU sqrt(2)

pytorch中的参数初始化方法相关推荐

  1. Pytorch nn.init 参数初始化方法

  2. Pytorch中的学习率调整方法

    在梯度下降更新参数的时,我们往往需要定义一个学习率来控制参数更新的步幅大小,常用的学习率有0.01.0.001以及0.0001等,学习率越大则参数更新越大.一般来说,我们希望在训练初期学习率大一些,使 ...

  3. Xavier参数初始化方法

    目录 1 梯度消失与梯度爆炸 2 Xavier方法​​​​​​​ 1 梯度消失与梯度爆炸 这是一个深度学习领域遇到的老问题了,即使是现在,任何一个新提出的模型,无论是MLP.CNN.还是RNN,随着深 ...

  4. 常见的参数初始化方法

    常见的参数初始化方法 我们常见的几种初始化方法是按照"正态分布随机初始化--对应为normal"和按照"均匀分布随机初始化--对应为uniform",这里就不再 ...

  5. Java中request有哪些方法,Java--获取request中所有参数的方法

    java获取request中的参数.java解析URL问号后的参数.有时候我们需要从request中获取参数,或者获取拼接在Url后面的参数,有时候一个一个去拿有点麻烦,一起拿出来放在一个map里面需 ...

  6. SpringBoot--获取路径中的参数(x-www-form-urlencoded)--方法/实例

    原文网址:SpringBoot--获取路径中的参数(x-www-form-urlencoded)--方法/实例_IT利刃出鞘的博客-CSDN博客 简介 本文用示例介绍SpringMVC如何获取路径中的 ...

  7. PyTorch常用参数初始化方法详解

    Python微信订餐小程序课程视频 https://edu.csdn.net/course/detail/36074 Python实战量化交易理财系统 https://edu.csdn.net/cou ...

  8. pytorch tensor 初始化_Pytorch - nn.init 参数初始化方法

    Pytorch 的参数初始化 - 给定非线性函数的推荐增益值(gain value):nonlinearity 非线性函数gain 增益 Linear / Identity1 Conv{1,2,3}D ...

  9. caffe中权值初始化方法

    参考:https://www.cnblogs.com/tianshifu/p/6165809.html 首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如 ...

最新文章

  1. 【jquery】jquery基础知识
  2. Unicode编码完全探究(三)之联通乱码
  3. IOS正则表达式的用法简介
  4. 20145302张薇《Java程序设计》实验三报告
  5. 每周分享之cookie详解
  6. 表格序号_让Excel表格中的序号自动更新,再也不怕删除、插入行了
  7. eclipse新建服务器项目,使用eclipse快速新建spirngboot项目的方法
  8. java excel导入_一场关于Java.lang.String类的极限调优操作
  9. 春招面经总结(获携程Offer)
  10. python 图片对比文件夹_使用python进行文件夹对比
  11. 小白虎远程控制软件待实现功能以及用户反馈! 请大家及时反馈需要完善的地方!
  12. esp32语音控制_【动态】乐鑫发布 AI 语音麦克风阵列开发板 ESP32Korvo
  13. 红旗linux8.0安装教程,RedHat Linux 红旗9.0安装图解
  14. html5页面上下分栏,HTML5+CSS3 分栏效果
  15. XXL-JOB调度中心HA及高可用方案
  16. 如何配置Maven镜像?
  17. 获取手机屏幕分辨率以及DPI的三个方法
  18. 海贼王通缉令在线生成器
  19. 用python爬取豆瓣《教父》影评等信息
  20. 华为LAB实验室-书本识别

热门文章

  1. python——作用域 == is
  2. Java泛型,枚举,注解
  3. android制作相册浏览器_一分钟简单制作一个专属于自己的卡通头像
  4. 论文浅尝 | 探索将预训练语言模型用于事件抽取和事件生成
  5. 论文浅尝 | 基于表示学习的大规模知识库规则挖掘
  6. 国科大高级人工智能-总结
  7. js实现右键单击打开自定义的菜单
  8. 设计模式系列 - 原型模式
  9. MySQL快速生成连续整数
  10. [模板]洛谷T3379 最近公共祖先(LCA) 倍增+邻接表