一般来说,网络编程我们只需要调用一些封装好的函数或者组件就能完成大部分的工作,但是一些特殊的情况下,就需要深入的理解

网络数据包的结构,以及协议分析。如:网络监控,故障排查等……

IP包是不安全的,但是它是互联网的基础,在各方面都有广泛的应用。由IP协议衍生的协议族有10数种(据我所知),以后还会出现

更多的基于IP的协议…

先从实际出发吧!

一般我们在谈上网速度的时候,专业上用带宽来描述,其实无论说网速或者带宽都是不准确的,呵呵。比如:1兆,512K……

有些在学校的学生,也许会有疑问,明明我的业务是1M,为什么下载速度到100K就飙不上去了?512K的为什么50多K就封顶了?…

这里所说的1M是指1Mbps = 1 Million Bits Per Second,也就是1M比特每秒,即一秒钟传输1048576个二进制位。我们知道一个字节

是8个二进制位。

好,又来问题了。即便这样子,1M=1048756÷8=131072÷1024=128K。那也应该有128K啊,为什么下载速度还是很少到120K,

110K都谢天谢地了。看完本文,你的帐就对了……

IP数据包结构

如图,一个刻度表示1个二进制位(比特)。

1-1.版本4位,表示版本号,目前最广泛的是4=B1000,即常说的IPv4;相信IPv6以后会广泛应用,它能给世界上每个纽扣都分配

一个IP地址。

1-2.头长4位,数据包头部长度。它表示数据包头部包括多少个32位长整型,也就是多少个4字节的数据。无选项则为5(红色部分)。

1-3.服务类型,包括8个二进制位,每个位的意义如下:

过程字段:3位,设置了数据包的重要性,取值越大数据越重要,取值范围为:0(正常)~ 7(网络控制)

延迟字段:1位,取值:0(正常)、1(期特低的延迟)

流量字段:1位,取值:0(正常)、1(期特高的流量)

可靠性字段:1位,取值:0(正常)、1(期特高的可靠性)

成本字段:1位,取值:0(正常)、1(期特最小成本)

保留字段:1位 ,未使用

1-4.包裹总长16位,当前数据包的总长度,单位是字节。当然最大只能是65535,及64KB。

2-1.重组标识16位,发送主机赋予的标识,以便接收方进行分片重组。

2-2.标志3位,他们各自的意义如下:

保留段位(2):1位,未使用

不分段位(1):1位,取值:0(允许数据报分段)、1(数据报不能分段)

更多段位(0):1位,取值:0(数据包后面没有包,该包为最后的包)、1(数据包后面有更多的包)

2-3.段偏移量13位,与更多段位组合,帮助接收方组合分段的报文,以字节为单位。

3-1.生存时间8位,经常ping命令看到的TTL(Time To Live)就是这个,每经过一个路由器,该值就减一,到零丢弃。

3-2.协议代码8位,表明使用该包裹的上层协议,如TCP=6,ICMP=1,UDP=17等。

3-3.头检验和16位,是IPv4数据包头部的校验和。

4-1.源始地址,32位4字节,我们常看到的IP是将每个字节用点(.)分开,如此而已。

5-1.目的地址,32位,同上。

6-1.可选选项,主要是给一些特殊的情况使用,往往安全路由会当作攻击而过滤掉,普联(TP_LINK)的TL-ER5110路由就能这么做。

7-1.用户数据。

TCP数据包结构

1-1.源始端口16位,范围当然是0-65535啦。

1-2.目的端口,同上。

2-1.数据序号32位,TCP为发送的每个字节都编一个号码,这里存储当前数据包数据第一个字节的序号。

3-1.确认序号32位,为了安全,TCP告诉接受者希望他下次接到数据包的第一个字节的序号。

4-1.偏移4位,类似IP,表明数据距包头有多少个32位。

4-2.保留6位,未使用,应置零。

4-3.紧急比特URG—当URG=1时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据)。

4-3.确认比特ACK—只有当ACK=1时确认号字段才有效。当ACK=0时,确认号无效。参考TCP三次握手

4-4.复位比特RST(Reset) —当RST=1时,表明TCP连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新

建立运输连接。参考TCP三次握手

4-5.同步比特SYN—同步比特SYN置为1,就表示这是一个连接请求或连接接受报文。参考TCP三次握手

4-6.终止比特FIN(FINal)—用来释放一个连接。当FIN=1时,表明此报文段的发送端的数据已发送完毕,并要求释放运输连接。

4-7.窗口字段16位,窗口字段用来控制对方发送的数据量,单位为字节。TCP连接的一端根据设置的缓存空间大小确定自己的接收窗口

大小,然后通知对方以确定对方的发送窗口的上限。

5-1.包校验和16位,包括首部数据这两部分。在计算检验和时,要在TCP报文段的前面加上12字节的伪首部。

5-2.紧急指针16位,紧急指针指出在本报文段中的紧急数据的最后一个字节的序号。

6-1.可选选项24位,类似IP,是可选选项。

6-2.填充8位,使选项凑足32位。

7-1.用户数据……

可以看出,每个IP包至少要20字节的头部长度,这些与下载内容无关,加上目前多数传输,包括http协议(就是IE直接下载),都是基于

TCP协议的,所以IP包裹还要从用户数据中扣除20字节的TCP包头,这里已经是40字节,加上其他程序的连接,状态确认等等包裹,因

而算出来要比理论值要小。

另外网络环境(包括稳定因素和传输节点的转发率)也是影响下载速度的重要原因…

TCP/IP数据包结构分析相关推荐

  1. TCP/IP数据包结构具体解释

    [关键词] TCP IP 数据包 结构 具体解释 网络 协议 一般来说,网络编程我们仅仅须要调用一些封装好的函数或者组件就能完毕大部分的工作,可是一些特殊的情况下,就须要深入的理解 网络数据包的结构, ...

  2. ibm aix 抓包命令_在IBM AIX上模拟丢弃的TCP / IP数据包

    本文介绍: AIX内核扩展,允许来往于指定主机的指定百分比的TCP / IP数据包被随机丢弃,以模拟不利的网络状况. 加载,激活和卸载内核扩展的实用程序. C和Java™实用程序,用于监视到达目标主机 ...

  3. 网络技术入门 :HTTP报文和TCP/IP数据包

    本章把HTTP报文和TCP/IP数据包放在一起.是因为: 报文是一个完成的有意义的数据. 数据包可以理解为组成报文的传输单元. 应用程序的数据一般都比较大,因此TCP会按照网络包的大小对数据进行拆分. ...

  4. JAVA网络编程:TCP/IP数据包结构

    2019独角兽企业重金招聘Python工程师标准>>> 一般来说,网络编程我们仅仅须要调用一些封装好的函数或者组件就能完毕大部分的工作,可是一些特殊的情况下,就须要深入的理解网络数据 ...

  5. TCP,IP数据包结构

    TCP/IP协议中各层的数据报结构是一个比较抽象的内容,大家在日常学习过程中往往难以理解和掌握,常常是死记硬背把它记住了事.本文首先利用Sniffer工具捕获了FTP命令操作过程中的所有数据包,然后对 ...

  6. TCP/IP数据包结构分解

    一般来说,网络编程我们只需要调用一些封装好的函数或者组件就能完成大部分的工作,但是一些特殊的情况下,就需要深入的理解 网络数据包的结构,以及协议分析.如:网络监控,故障排查等-- IP包是不安全的,但 ...

  7. TCP/IP数据包结构详解

    一般来说,网络编程我们只需要调用一些封装好的函数或者组件就能完成大部分的工作,但是一些特殊的情况下,就需要深入的理解 网络数据包的结构,以及协议分析.如:网络监控,故障排查等-- IP包是不安全的,但 ...

  8. 【计算机网络 24】TCP/IP数据包结构详解

    一.前言 一般来说,网络编程我们只需要调用一些封装好的函数或者组件就能完成大部分的工作,但是一些特殊的情况下,就需要深入的理解 网络数据包的结构,以及协议分析.如:网络监控,故障排查等. IP包是不安 ...

  9. Linux 系统应用编程——网络编程(TCP/IP 数据包格式解析)

    图中括号中的数字代表的是当前域所占的空间大小,单位是bit位. 黄色的是数据链路层的头部,一共14字节 绿色的部分是IP头部,一般是20字节 紫色部分是TCP头部,一般是20字节 最内部的是数据包内容 ...

最新文章

  1. 5分钟回顾Linux25年的发展历程与变迁
  2. 编写UEditor插件
  3. linux查找乱码文件,linux删除乱码文件或文件夹
  4. Shell的基本语法结构
  5. 【 || 短路运算】if语句的简化:短路原理、短路效应
  6. 一、【用django2.0来开发】 环境部署和初始化项目
  7. Java连接Elasticsearch6.xxx CRUD篇二
  8. [转]浅谈Normalize.css
  9. DRBD详细解说及配置过程记录
  10. 【10g中db_recovery_file_dest和log_archive_dest参数的关系】
  11. java安装没有jdk文件_java文件在没有安装jdk的windows下运行。
  12. 盘点八个程序员必须知道的代码编辑器
  13. 软负载均衡和F5负载均衡(硬负载均衡)区别
  14. 【分享】超级菜鸟另类玩swf反汇编
  15. Only fullscreen opaque activities can request orientation比较完美的解决方法,黑白屏问题解决
  16. 游戏手柄(JoyStick)编程学习笔记(1)
  17. r720支持多少频率的内存吗_高频内存对游戏帧数影响大吗?2400MHz和3200MHz频率内存对比实测...
  18. 让我们旋转跳跃不停歇~~~当3D打印遇上八音盒!(三)
  19. 用户为先:谷歌做好三件事
  20. 【300+精选大厂面试题持续分享】大数据运维尖刀面试题专栏(十三)

热门文章

  1. 算法复习——计算几何基础(zoj1081)
  2. Python学习 - 常用模块(二)
  3. ASP.NET页面的字符编码设置
  4. 静态页面之间的转发与json与ajax做到动态数据
  5. item-设置可见性
  6. FM实现F4帮助系列三:弹出框多筛选…
  7. 截获所有以太网帧数据并进行具体分析
  8. 如何使用三态工作流 - [MOSS 2007应用日记]
  9. Swift傻傻分不清楚系列(十一)类和结构体
  10. javascript第三天(2)