建议比对『MXNet』第七弹_多GPU并行程序设计

一、tensorflow GPU设置

GPU指定占用

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7。

GPU模式禁用

import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"

GPU资源申请规则

# 设置 GPU 按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

二、单机多GPU工作原理

以一篇csdn博客(出处见水印)上的图说明多GPU工作原理:

想让 TensorFlow 在多个 GPU 上运行, 需要建立 multi-tower 结构, 在这个结构里每个 tower 分别被指配给不同的 GPU 运行,汇总工作一般交由CPU完成,示意如下,

# 新建一个 graph.
c = []
for d in ['/gpu:2', '/gpu:3']:with tf.device(d):a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):sum = tf.add_n(c)
# 新建session with log_device_placement并设置为True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 运行这个op.
print sess.run(sum)

三、官方demo

多GPU分布+LR衰减+滑动平均

和MXNet不同,由于TensorFlow使用上下文指定设备,所以数据无需显示的拷贝到指定设备,在目标设备上下文中获取即可(需要调用对应节点于该设备下,如下文中的出队节点)

另一个值得注意的点在于收集来的梯度格式为List of lists of (gradient, variable) tuples,我们计算后返回的是List of (gradient, variable) tuples,variable随便指定一组gpu上的即可,这是因为和MXNet不同,MXNet是得到grad平均值后分发给各个GPU各自更新,TensorFlow实际是各个GPU使用同一套参数(tf.get_variable_scope().reuse_variables()),虽然会被拷贝到各个设备,但是彼此之间是有逻辑关系的,是共享参数,简化示意如下:

#将神经网络的优化过程跑在不同的GPU上
for i in range(N_GPU):with tf.debice('/gpu:%d'%i)with tf.name_scope('GPU_%d'%i) as scope:cur_loss = get_loss(x,y_regularizer,scope)#tf.get_variable的命名空间tf.get_variable_scope().reuse_variables()#使用当前gpu计算所有变量的梯度grads= opt.compute_gradients(cur_loss)tower_grads.append(grads)
#计算变量的平均梯度
grads = average_gradients(tower_grads)
#使用平均梯度更新参数
apply_gradient_op = opt.apply_gradients(grads,global_step = global)

models/tutorials/image/cifar10/cifer10_multi_gpu-train.py

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================="""A binary to train CIFAR-10 using multiple GPUs with synchronous updates.
Accuracy:
cifar10_multi_gpu_train.py achieves ~86% accuracy after 100K steps (256
epochs of data) as judged by cifar10_eval.py.
Speed: With batch_size 128.
System        | Step Time (sec/batch)  |     Accuracy
--------------------------------------------------------------------
1 Tesla K20m  | 0.35-0.60              | ~86% at 60K steps  (5 hours)
1 Tesla K40m  | 0.25-0.35              | ~86% at 100K steps (4 hours)
2 Tesla K20m  | 0.13-0.20              | ~84% at 30K steps  (2.5 hours)
3 Tesla K20m  | 0.13-0.18              | ~84% at 30K steps
4 Tesla K20m  | ~0.10                  | ~84% at 30K steps
Usage:
Please see the tutorial and website for how to download the CIFAR-10
data set, compile the program and train the model.
http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionfrom datetime import datetime
import os.path
import re
import timeimport numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
import cifar10FLAGS = tf.app.flags.FLAGStf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train',"""Directory where to write event logs """"""and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 1000000,"""Number of batches to run.""")
tf.app.flags.DEFINE_integer('num_gpus', 1,"""How many GPUs to use.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,"""Whether to log device placement.""")def tower_loss(scope, images, labels):"""Calculate the total loss on a single tower running the CIFAR model.Args:scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'images: Images. 4D tensor of shape [batch_size, height, width, 3].labels: Labels. 1D tensor of shape [batch_size].Returns:Tensor of shape [] containing the total loss for a batch of data"""# Build inference Graph.logits = cifar10.inference(images)# Build the portion of the Graph calculating the losses. Note that we will# assemble the total_loss using a custom function below._ = cifar10.loss(logits, labels)# Assemble all of the losses for the current tower only.losses = tf.get_collection('losses', scope)# Calculate the total loss for the current tower.total_loss = tf.add_n(losses, name='total_loss')# Attach a scalar summary to all individual losses and the total loss; do the# same for the averaged version of the losses.for l in losses + [total_loss]:# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training# session. This helps the clarity of presentation on tensorboard.loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)tf.summary.scalar(loss_name, l)return total_lossdef average_gradients(tower_grads):"""Calculate the average gradient for each shared variable across all towers.Note that this function provides a synchronization point across all towers.Args:tower_grads: List of lists of (gradient, variable) tuples. The outer listis over individual gradients. The inner list is over the gradientcalculation for each tower.Returns:List of pairs of (gradient, variable) where the gradient has been averagedacross all towers."""average_grads = []for grad_and_vars in zip(*tower_grads):# Note that each grad_and_vars looks like the following:#   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))grads = []for g, _ in grad_and_vars:# Add 0 dimension to the gradients to represent the tower.expanded_g = tf.expand_dims(g, 0)# Append on a 'tower' dimension which we will average over below.grads.append(expanded_g)# Average over the 'tower' dimension.grad = tf.concat(axis=0, values=grads)grad = tf.reduce_mean(grad, 0)# Keep in mind that the Variables are redundant because they are shared# across towers. So .. we will just return the first tower's pointer to# the Variable.v = grad_and_vars[0][1]grad_and_var = (grad, v)average_grads.append(grad_and_var)return average_gradsdef train():"""Train CIFAR-10 for a number of steps."""with tf.Graph().as_default(), tf.device('/cpu:0'):# Create a variable to count the number of train() calls. This equals the# number of batches processed * FLAGS.num_gpus.global_step = tf.get_variable('global_step', [],initializer=tf.constant_initializer(0), trainable=False)# Calculate the learning rate schedule.num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /FLAGS.batch_size)decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)# Decay the learning rate exponentially based on the number of steps.lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,global_step,decay_steps,cifar10.LEARNING_RATE_DECAY_FACTOR,staircase=True)# Create an optimizer that performs gradient descent.opt = tf.train.GradientDescentOptimizer(lr)# Get images and labels for CIFAR-10.images, labels = cifar10.distorted_inputs()batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue([images, labels], capacity=2 * FLAGS.num_gpus)# Calculate the gradients for each model tower.tower_grads = []with tf.variable_scope(tf.get_variable_scope()):for i in xrange(FLAGS.num_gpus):with tf.device('/gpu:%d' % i):with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:# Dequeues one batch for the GPUimage_batch, label_batch = batch_queue.dequeue()# Calculate the loss for one tower of the CIFAR model. This function# constructs the entire CIFAR model but shares the variables across# all towers.loss = tower_loss(scope, image_batch, label_batch)# Reuse variables for the next tower.tf.get_variable_scope().reuse_variables()# Retain the summaries from the final tower.summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)# Calculate the gradients for the batch of data on this CIFAR tower.grads = opt.compute_gradients(loss)# Keep track of the gradients across all towers.tower_grads.append(grads)# We must calculate the mean of each gradient. Note that this is the# synchronization point across all towers.grads = average_gradients(tower_grads)# Add a summary to track the learning rate.summaries.append(tf.summary.scalar('learning_rate', lr))# Add histograms for gradients.for grad, var in grads:if grad is not None:summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))# Apply the gradients to adjust the shared variables.apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)# Add histograms for trainable variables.for var in tf.trainable_variables():summaries.append(tf.summary.histogram(var.op.name, var))# Track the moving averages of all trainable variables.variable_averages = tf.train.ExponentialMovingAverage(cifar10.MOVING_AVERAGE_DECAY, global_step)variables_averages_op = variable_averages.apply(tf.trainable_variables())# Group all updates to into a single train op.train_op = tf.group(apply_gradient_op, variables_averages_op)# Create a saver.saver = tf.train.Saver(tf.global_variables())# Build the summary operation from the last tower summaries.summary_op = tf.summary.merge(summaries)
################################################################################# Build an initialization operation to run below.init = tf.global_variables_initializer()# Start running operations on the Graph. allow_soft_placement must be set to# True to build towers on GPU, as some of the ops do not have GPU# implementations.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=FLAGS.log_device_placement))sess.run(init)# Start the queue runners.tf.train.start_queue_runners(sess=sess)summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)for step in xrange(FLAGS.max_steps):start_time = time.time()_, loss_value = sess.run([train_op, loss])duration = time.time() - start_timeassert not np.isnan(loss_value), 'Model diverged with loss = NaN'if step % 10 == 0:num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpusexamples_per_sec = num_examples_per_step / durationsec_per_batch = duration / FLAGS.num_gpusformat_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ''sec/batch)')print (format_str % (datetime.now(), step, loss_value,examples_per_sec, sec_per_batch))if step % 100 == 0:summary_str = sess.run(summary_op)summary_writer.add_summary(summary_str, step)# Save the model checkpoint periodically.if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)def main(argv=None):  # pylint: disable=unused-argumentcifar10.maybe_download_and_extract()if tf.gfile.Exists(FLAGS.train_dir):tf.gfile.DeleteRecursively(FLAGS.train_dir)tf.gfile.MakeDirs(FLAGS.train_dir)train()if __name__ == '__main__':tf.app.run()

数据输入函数如下,

def distorted_inputs():"""Construct distorted input for CIFAR training using the Reader ops.Returns:images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.labels: Labels. 1D tensor of [batch_size] size.Raises:ValueError: If no data_dir"""if not FLAGS.data_dir:raise ValueError('Please supply a data_dir')data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,batch_size=FLAGS.batch_size)if FLAGS.use_fp16:images = tf.cast(images, tf.float16)labels = tf.cast(labels, tf.float16)
return images, labels

tf.contrib.slim.prefetch_queue.prefetch_queue从介绍来看就是个输入数据队列

Signature: tf.contrib.slim.prefetch_queue.prefetch_queue(tensors, capacity=8, num_threads=1, dynamic_pad=False, shared_name=None, name=None) Docstring: Creates a queue to prefetech tensors from `tensors`. A queue runner for enqueing tensors into the prefetch_queue is automatically added to the TF QueueRunners collection. Example: This is for example useful to pre-assemble input batches read with `tf.train.batch()` and enqueue the pre-assembled batches. Ops that dequeue from the pre-assembled queue will not pay the cost of assembling the batch. images, labels = tf.train.batch([image, label], batch_size=32, num_threads=4) batch_queue = prefetch_queue([images, labels]) images, labels = batch_queue.dequeue() logits = Net(images) loss = Loss(logits, labels) Args: tensors: A list or dictionary of `Tensors` to enqueue in the buffer. capacity: An integer. The maximum number of elements in the queue. num_threads: An integer. Number of threads running the enqueue op. dynamic_pad: Boolean. Whether to allow variable dimensions in input shapes. shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions. name: (Optional) A name for the operations. Returns: A queue from which you can dequeue tensors with the same type and shape as `tensors`.

转载于:https://www.cnblogs.com/hellcat/p/9194110.html

『TensorFlow』分布式训练_其二_单机多GPU并行GPU模式设定相关推荐

  1. 『TensorFlow』SSD源码学习_其二:基于VGG的SSD网络前向架构

    Fork版本项目地址:SSD 参考自集智专栏 一.SSD基础 在分类器基础之上想要识别物体,实质就是 用分类器扫描整张图像,定位特征位置 .这里的关键就是用什么算法扫描,比如可以将图片分成若干网格,用 ...

  2. python 动漫卡通人物图片大全,『TensorFlow』DCGAN生成动漫人物头像_下

    一.计算图效果以及实际代码实现 计算图效果 实际模型实现 相关介绍移步我的github项目. 二.生成器与判别器设计 生成器 相关参量, 噪声向量z维度:100 标签向量y维度:10(如果有的话) 生 ...

  3. 『TensorFlow』DCGAN生成动漫人物头像_下

    『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...

  4. 『TensorFlow』函数查询列表_张量属性调整

    博客园 首页 新随笔 新文章 联系 订阅 管理 『TensorFlow』函数查询列表_张量属性调整 数据类型转换Casting 操作 描述 tf.string_to_number (string_te ...

  5. 『TensorFlow』第七弹_保存载入会话_霸王回马

    首更: 由于TensorFlow的奇怪形式,所以载入保存的是sess,把会话中当前激活的变量保存下来,所以必须保证(其他网络也要求这个)保存网络和载入网络的结构一致,且变量名称必须一致,这是caffe ...

  6. 『TensorFlow』模型保存和载入方法汇总

    一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变 ...

  7. 『TensorFlow』模型载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  8. 『TensorFlow』命令行参数解析

    argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...

  9. 『TensorFlow』专题汇总

    TensorFlow函数查询 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『 ...

最新文章

  1. 模块间holder的Boost.Flyweight测试
  2. zen cart 操作-修改
  3. ES5-16【utils】数组方法、类数组
  4. 工作208:element $message居中测试无法实现
  5. 去哪儿-06-home-ajax
  6. 管理(1)--- 管理者的基本要求是什么?
  7. 10 个功能独特且饱受好评的开源人工智能项目
  8. python pyqt5实现自定义点击事件_Python 图形用户界面实战 : PyQt5 实现摘要算法计算...
  9. java 怎么调用clojure_从java调用Clojure时Clojure状态的范围
  10. pbrt1 Introduction
  11. 赤兔oracle恢复软件 收费,赤兔Oracle数据库恢复软件下载 v11.6官方版-下载啦
  12. 怎么做浪漫表白二维码?给喜欢的人制作一个二维码
  13. ISP——AWB(Auto White Balance)
  14. So Different You Are
  15. Shine 和 8hz-mp3
  16. 园区网组网(一)OSPF+PAT上网
  17. 分治法解决最近点对问题
  18. 轻量化网络结构——MobileNet
  19. 打印服务器spoolsv服务自动停止
  20. win11 某个任务栏图标显示空白解决方法

热门文章

  1. web前端入门到实战:CSS3两大实用属性,以及网页制作技巧
  2. HTML5前端开发真的会被取代吗?
  3. c++删除文件delete_开启phpstudy中apache的put和delete请求方法并进行测试
  4. 计算机录音机应用程序在哪,windows7如何给电脑录音 windows7录音机在哪
  5. OPencv_边缘检测算法
  6. eclipse里source的快捷方法_教你如何在Linux中设置快捷方式图标
  7. python爬虫面试自我介绍范文_走过路过不容错过,Python爬虫面试总结
  8. 嗅觉计算机应用,sensonic计算机嗅觉分析仪
  9. C语言学习笔记---字符读取函数scanf()、gets()、fgets()
  10. 无线AP网络覆盖两种组网方式