python信用评分卡(附代码,博主录制)

https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

预测变量线性检验

当构建一个二元分类器时,很多实践者会立即跳转到逻辑回归,因为它很简单。但是,很多人也忘记了逻辑回归是一种线性模型,预测变量间的非线性交互需要手动编码。回到欺诈检测问题,要获得好的模型性能,像“billing address = shipping address and transaction amount < $50”这种高阶交互特征是必须的。因此,每个人都应该选择适合高阶交互特征的带核SVM或基于树的分类器。

信用评分---是否批准贷款概率---逻辑回归

https://wenku.baidu.com/view/77f741ea5ef7ba0d4a733b6c.html?from=search

概率定义:可能发生事件数量/所有事件数量

odd表示发生概率/不发生概率

odd ratio(两个odd值相比较)

警告:odd和概率是两个不同概念

逻辑回归就是线性的伯努利函数

公式用对数函数处理

逻辑回归是计算分类变量概率

二进制数据(分类数据)不呈现正态分布,如果遇到极端的x取值,y预测概率可能偏差较大

对数函数可视化

对数函数里,0-1取值范围在x轴,但我们想要概率到y轴,所以我们去对数函数的反函数

逻辑回归公式

信用得分增加对应得odd概率增加

odd ratio增加可视化图

python脚本实现

# -*- coding: utf-8 -*-'''
GLM是广义线性模型的一种
Logistic Regression
A logistic regression is an example of a "Generalized Linear Model (GLM)".The input values are the recorded O-ring data from the space shuttle launches before 1986,
and the fit indicates the likelihood of failure for an O-ring.Taken from http://www.brightstat.com/index.php?option=com_content&task=view&id=41&Itemid=1&limit=1&limitstart=2
'''import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as snsfrom statsmodels.formula.api import glm
from statsmodels.genmod.families import Binomialsns.set_context('poster')def getData():'''Get the data '''inFile = 'challenger_data.csv'data = np.genfromtxt(inFile, skip_header=1, usecols=[1, 2],missing_values='NA', delimiter=',')# Eliminate NaNsdata = data[~np.isnan(data[:, 1])]return datadef prepareForFit(inData):''' Make the temperature-values unique, and count the number of failures and successes.Returns a DataFrame'''# Create a dataframe, with suitable columns for the fitdf = pd.DataFrame()df['temp'] = np.unique(inData[:,0])df['failed'] = 0df['ok'] = 0df['total'] = 0df.index = df.temp.values# Count the number of starts and failuresfor ii in range(inData.shape[0]):curTemp = inData[ii,0]curVal  = inData[ii,1]df.loc[curTemp,'total'] += 1if curVal == 1:df.loc[curTemp, 'failed'] += 1else:df.loc[curTemp, 'ok'] += 1return dfdef logistic(x, beta, alpha=0):''' Logistic Function '''return 1.0 / (1.0 + np.exp(np.dot(beta, x) + alpha))def showResults(challenger_data, model):''' Show the original data, and the resulting logit-fit'''temperature = challenger_data[:,0]failures = challenger_data[:,1]# First plot the original dataplt.figure()setFonts()sns.set_style('darkgrid')np.set_printoptions(precision=3, suppress=True)plt.scatter(temperature, failures, s=200, color="k", alpha=0.5)plt.yticks([0, 1])plt.ylabel("Damage Incident?")plt.xlabel("Outside Temperature [F]")plt.title("Defects of the Space Shuttle O-Rings vs temperature")plt.tight_layout# Plot the fitx = np.arange(50, 85)alpha = model.params[0]beta = model.params[1]y = logistic(x, beta, alpha)plt.hold(True)plt.plot(x,y,'r')plt.xlim([50, 85])outFile = 'ChallengerPlain.png'showData(outFile)if __name__ == '__main__':inData = getData()dfFit = prepareForFit(inData)# fit the model# --- >>> START stats <<< ---model = glm('ok + failed ~ temp', data=dfFit, family=Binomial()).fit()# --- >>> STOP stats <<< ---print(model.summary())showResults(inData, model)

逻辑回归简化处理-----同盾分数与同盾多头借贷

excel保留两个字段,一个字段是二分类变量,一个字段是数值

同盾分数越高,多头命中概率越高

预测,当同盾分数为20,60,80分时,同盾多头借贷命中概率

卡方检验数据偏大,对模型保持谨慎

# -*- coding: utf-8 -*-
"""
Created on Wed Mar  7 10:07:49 2018@author: Administrator
"""import csv
import numpy as np
import pandas as pd
from statsmodels.formula.api import glm
from statsmodels.genmod.families import Binomial
import matplotlib.pyplot as plt
import seaborn as sns
#中文字体设置
from matplotlib.font_manager import FontProperties
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14)#该函数的其他的两个属性"notebook"和"paper"却不能正常显示中文
sns.set_context('poster')fileName="同盾多头借贷与同盾分数回归分析.csv"
reader = csv.reader(open(fileName))#获取数据,类型:阵列
def getData():'''Get the data '''inFile = '同盾多头借贷与同盾分数回归分析.csv'data = np.genfromtxt(inFile, skip_header=1, usecols=[0, 1],missing_values='NA', delimiter=',')# Eliminate NaNs 消除NaN数据data1 = data[~np.isnan(data[:, 1])]return data1def prepareForFit(inData):''' Make the temperature-values unique, and count the number of failures and successes.Returns a DataFrame'''# Create a dataframe, with suitable columns for the fitdf = pd.DataFrame()#np.unique返回去重的值df['同盾分数'] = np.unique(inData[:,0])df['同盾多头借贷命中'] = 0df['同盾多头借贷未命中'] = 0df['total'] = 0df.index = df.同盾分数.values# Count the number of starts and failures#inData.shape[0] 表示数据多少for ii in range(inData.shape[0]):#获取第一个值的温度curTemp = inData[ii,0]#获取第一个值的值,是否发生故障curVal  = inData[ii,1]df.loc[curTemp,'total'] += 1if curVal == 1:df.loc[curTemp, '同盾多头借贷命中'] += 1else:df.loc[curTemp, '同盾多头借贷未命中'] += 1return df#逻辑回归公式
def logistic(x, beta, alpha=0):''' Logistic Function '''#点积,比如np.dot([1,2,3],[4,5,6]) = 1*4 + 2*5 + 3*6 = 32return 1.0 / (1.0 + np.exp(np.dot(beta, x) + alpha))  #不太懂
def setFonts(*options):return
#绘图
def Plot(data,alpha,beta,picName):#阵列,数值array_values = data[:,0]#阵列,二分类型array_type = data[:,1]plt.figure(figsize=(10,10))setFonts()#改变指定主题的风格参数sns.set_style('darkgrid')#numpy输出精度局部控制np.set_printoptions(precision=3, suppress=True)plt.scatter(array_values, array_type, s=200, color="k", alpha=0.5)#获x轴列表值,同盾分数list_values = [row[0] for row in inData]list_values = [int(i) for i in list_values]#获取列表最大值和最小值max_value=max(list_values)print("max_value:",max_value)min_value=min(list_values)print("min_value:",min_value)#最大值和最小值留有多余空间x = np.arange(min_value, max_value+1)y = logistic(x, beta, alpha)print("test")plt.hold(True)plt.plot(x,y,'r')#设置y轴坐标刻度plt.yticks([0, 1])#plt.xlim()返回当前的X轴绘图范围plt.xlim([min_value,max_value])outFile = picNameplt.ylabel("同盾多头借贷命中概率",fontproperties=font)plt.xlabel("同盾分数",fontproperties=font)plt.title("逻辑回归-同盾分数VS同盾多头借贷命中概率",fontproperties=font)#产生方格plt.hold(True)#图像外部边缘的调整plt.tight_layoutplt.show(outFile)#用于预测逻辑回归概率
def Prediction(x):y = logistic(x, beta, alpha)  print("probability prediction:",y)
'''
Prediction(80)
probability prediction: 0.872046286637Prediction(100)
probability prediction: 0.970179520648'''#获取数据
inData = getData()
#得到频率计算后的数据
dfFit = prepareForFit(inData)
#Generalized Linear Model 建立二项式模型
model = glm('同盾多头借贷未命中 +同盾多头借贷命中 ~ 同盾分数', data=dfFit, family=Binomial()).fit()
print(model.summary())
chi2=model.pearson_chi2
'''Out[37]: 46.893438309853522  分数越小,p值越大,H0成立,模型越好'''
print("the chi2 is smaller,the model is better")alpha = model.params[0]
beta = model.params[1]Plot(inData,alpha,beta,"logiscti regression")#测试
Prediction(20)
Prediction(60)
Prediction(80)

  

  

逻辑回归参数解读

http://www.doc88.com/p-5876372494494.html

参数解读

4.正则化

在实际应用中,为了防止过拟合,使得模型具有较强的泛化能力,往往还需要在目标函数中加入正则项。在逻辑回归的实际应用中,L1正则应用较为广泛,原因是在面临诸如广告系统等实际应用的场景,特征的维度往往达到百万级甚至上亿,而L1正则会产生稀疏模型,在避免过拟合的同时起到了特征选择的作用。工业界一般采用更快的L-BFGS算法求解。关于L1正则逻辑回归和逻辑回归在广告系统中的实际应用可以参考 这里 。

逻辑回归检验好坏客户标签

规则标签,逻辑回归不显著,表明坏客户标签少了

平台B4拒绝,逻辑回归过于显著,表明坏客户标签过多

B4规则

数据保存为CSV逗号格式,CSV utf8格式会报错,而且会丢失数据

# -*- coding: utf-8 -*-
"""
Created on Fri Jul 21 09:28:25 2017@author: tobyCSV数据结构,第一列为数值,第二列为二分类型
"""
import csv
import numpy as np
import pandas as pd
from statsmodels.formula.api import glm
from statsmodels.genmod.families import Binomial
import matplotlib.pyplot as plt
import seaborn as sns
#中文字体设置
from matplotlib.font_manager import FontProperties
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=14)#该函数的其他的两个属性"notebook"和"paper"却不能正常显示中文
sns.set_context('poster')fileName="同盾分数与好坏客户_平台拒绝.csv"
reader = csv.reader(open(fileName))#获取数据,类型:阵列
def getData():'''Get the data '''data = np.genfromtxt(fileName, skip_header=1, usecols=[0, 1],missing_values='NA', delimiter=',')# Eliminate NaNs 消除NaN数据data1 = data[~np.isnan(data[:, 1])]return data1def prepareForFit(inData):''' Make the temperature-values unique, and count the number of failures and successes.Returns a DataFrame'''# Create a dataframe, with suitable columns for the fitdf = pd.DataFrame()#np.unique返回去重的值df['同盾分数'] = np.unique(inData[:,0])df['坏客户'] = 0df['好客户'] = 0df['total'] = 0df.index = df.同盾分数.values# Count the number of starts and failures#inData.shape[0] 表示数据多少for ii in range(inData.shape[0]):#获取第一个值的温度curTemp = inData[ii,0]#获取第一个值的值,是否发生故障curVal  = inData[ii,1]df.loc[curTemp,'total'] += 1if curVal == 1:df.loc[curTemp, '坏客户'] += 1else:df.loc[curTemp, '好客户'] += 1return df#逻辑回归公式
def logistic(x, beta, alpha=0):''' Logistic Function '''#点积,比如np.dot([1,2,3],[4,5,6]) = 1*4 + 2*5 + 3*6 = 32return 1.0 / (1.0 + np.exp(np.dot(beta, x) + alpha))   #不太懂
def setFonts(*options):return
#绘图
def Plot(data,alpha,beta,picName):#阵列,数值array_values = data[:,0]#阵列,二分类型array_type = data[:,1]plt.figure(figsize=(10,10))setFonts()#改变指定主题的风格参数sns.set_style('darkgrid')#numpy输出精度局部控制np.set_printoptions(precision=3, suppress=True)plt.scatter(array_values, array_type, s=200, color="k", alpha=0.5)#获x轴列表值,同盾分数list_values = [row[0] for row in inData]list_values = [int(i) for i in list_values]#获取列表最大值和最小值max_value=max(list_values)print("max_value:",max_value)min_value=min(list_values)print("min_value:",min_value)#最大值和最小值留有多余空间x = np.arange(min_value, max_value+1)y = logistic(x, beta, alpha) plt.hold(True)plt.plot(x,y,'r')#设置y轴坐标刻度plt.yticks([0, 1])#plt.xlim()返回当前的X轴绘图范围plt.xlim([min_value,max_value])outFile = picNameplt.ylabel("坏客户概率",fontproperties=font)plt.xlabel("同盾分数",fontproperties=font)plt.title("逻辑回归-同盾分数VS怀客户概率",fontproperties=font)#产生方格plt.hold(True)#图像外部边缘的调整plt.tight_layoutplt.show(outFile)#用于预测逻辑回归概率
def Prediction(x):y = logistic(x, beta, alpha)   print("probability prediction:",y)
'''
Prediction(80)
probability prediction: 0.872046286637
Prediction(100)
probability prediction: 0.970179520648
'''#获取数据
inData = getData()
#得到频率计算后的数据
dfFit = prepareForFit(inData)
#Generalized Linear Model 建立二项式模型
model = glm('好客户 +坏客户 ~ 同盾分数', data=dfFit, family=Binomial()).fit()
print(model.summary())
chi2=model.pearson_chi2
'''Out[37]: 46.893438309853522  分数越小,p值越大,H0成立,模型越好'''
print("the chi2 is smaller,the model is better") alpha = model.params[0]
beta = model.params[1]Plot(inData,alpha,beta,"logiscti regression")#测试
print("同盾分数20分时,坏客户概率:")
Prediction(20)
print("同盾分数60分时,坏客户概率:")
Prediction(60)
print("同盾分数80分时,坏客户概率:")
Prediction(80)

  

规则标签,逻辑回归不显著,表明坏客户标签少了

逻辑回归评分卡

在建立评分卡模型时,我们经常会使用逻辑回归来对数据进行建模。但在用逻辑回归进行预测时,逻辑回归返回的是一个概率值,并不是评分卡分数。下面为大家介绍如何将模型结果转换为标准评分卡,具体步骤如下:

dvars = {}
scores = {}
df = pd.read_excel("german.xlsx")
df_of_woe = calculate_woe(df)  # 计算woe
df_of_woe.to_excel("german_woe.xlsx")  # 将得到的woe储存
df_of_woe = pd.read_excel("german_woe.xlsx")
iv_list = calculate_iv(df_of_woe)
df_after_iv = filt_by_iv(df_of_woe, 'number', 20)  # 根据iv值选取留下的变量
df_after_pear = remove_pear(df_after_iv, iv_list, 0.1)  # 根据pearson相关系数去除线性相关性较高的变量
df_after_vif = remove_vif(df_of_woe, df_after_pear, 0, 5)  # 根据vif剔除变量,最少剩20######
logitres, var_list = logitreg(df_after_vif, 0, ks=True)
# joblib.dump(logitres, 'logitres.pkl')
# logitmodel = joblib.load('logitres.pkl')
# dvars:{'Account Balance': [[1, -0.81809870569494136], [2, -0.26512918778930789], [4, 1.1762632228981755]], 'Duration of Credit (month)': [[4, 0.49062291644847106], [18, -0.10423628844554551], [33, -0.76632879785353658]], 'Payment Status of Previous Credit': [[0, -1.2340708354832155], [2, -0.088318616977396236], [3, 0.50972611843257376]], 'Purpose': [[0, 0.077650934230066068], [5, -0.30830135965451672]], 'Credit Amount': [[250, 0.20782931634116719], [3832, -0.33647223662121289], [8858, -1.0624092400041492]], 'Value Savings/Stocks': [[1, -0.27135784446283229], [2, 0.14183019543921782], [4, 0.77780616879129605]], 'Length of current employment': [[1, -0.43113746316229135], [3, -0.032103245384417431], [4, 0.29871666717548989]], 'Instalment per cent': [[1, 0.1904727690246609], [3, 0.064538521137571164], [4, -0.15730028873015464]], 'Sex & Marital Status': [[1, -0.26469255422708216], [3, 0.16164135155641582]], 'Guarantors': [[1, -0.027973852042406294], [3, 0.58778666490211906]], 'Duration in Current address': [[1, -0.017335212001545787], [3, 0.013594092097163191]], 'Most valuable available asset': [[1, 0.46103495926297511], [2, -0.028573372444056114], [3, -0.21829480143299645]], 'Age (years)': [[19, -0.062035390919452635], [41, 0.17435338714477774]], 'Concurrent Credits': [[1, -0.4836298809575007], [2, -0.45953232937844019], [3, 0.12117862465752169]], 'Type of apartment': [[1, -0.40444522020741891], [2, 0.096438848095699109]], 'No of Credits at this Bank': [[1, -0.074877498932750475], [2, 0.1157104960544109], [3, 0.33135713595444244]], 'Occupation': [[1, 0.078471615441495099], [3, 0.022780028331819906], [4, -0.20441251460814672]], 'No of dependents': [[1, -0.0028161099996421362], [2, 0.015408625352845061]], 'Telephone': [[1, -0.064691321198988669], [2, 0.098637588071948196]], 'Foreign Worker': [[1, -0.034867268795640227], [2, 1.262915339959386]]}
x = df.iloc[2:3, 1:]  # 从原始数据集中选取一个观测
print("x for test:", x)  # 打印出来看一眼
x_score = cal_score(logitres, x, dvars, q=600, p=30)  # 得到这个x对应的预测值(01之间)以及得分。
# 默认概率为0.5时为600分,p/1-p每翻一倍多30print("x_score:", x_score)
credit_score = (get_score(scores, 30))  # 得到每个变量在不同区间时对应的分数
print("credit score list:", credit_score)
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
import warnings
import matplotlib.pyplot as plt
from sklearn.externals import joblib
from sklearn.metrics import accuracy_scorewarnings.filterwarnings("ignore")def woe_more(item, df, df_woe):xitem = np.array(df[item])y = df.loc[:, 'target']y = np.array(y)x = []for k in xitem:x.append([k])leastentro = 100tt_bad = sum(y)tt_good = len(y) - sum(y)l = []for m in range(10):y_pred = KMeans(n_clusters=4, random_state=m).fit_predict(x)a = [[[], []], [[], []], [[], []], [[], []]]  # 第一项为所有值,第二项为违约情况for i in range(len(y_pred)):a[y_pred[i]][0].append(x[i][0])a[y_pred[i]][1].append(y[i])a = sorted(a, key=lambda x: sum(x[0]) / len(x[0]))if sum(a[0][1]) / len(a[0][1]) >= sum(a[1][1]) / len(a[1][1]) >= sum(a[2][1]) / len(a[2][1]) >= sum(a[3][1]) \/ len(a[3][1]) or sum(a[0][1]) / len(a[0][1]) <= sum(a[1][1]) / len(a[1][1]) \<= sum(a[2][1]) / len(a[2][1]) <= sum(a[3][1]) / len(a[3][1]):entro = 0for j in a:entro = entro + (- (len(j[1]) - sum(j[1])) / len(j[1]) * np.log((len(j[1]) - sum(j[1])) \/ len(j[1])) - sum(j[1]) / len(j[1]) * np.log(sum(j[1])) / len(j[1]))if entro < leastentro:leastentro = entrol = []for k in a:l.append([min(k[0]), max(k[0]), np.log((sum(k[1]) / (len(k[1]) - sum(k[1]))) / (tt_bad / tt_good)),sum(k[1]) / len(k[1])])# print (sum(k[1]),len(k[1]))for m in range(10):y_pred = KMeans(n_clusters=5, random_state=m).fit_predict(x)a = [[[], []], [[], []], [[], []], [[], []], [[], []]]  # 第一项为所有值,第二项为违约情况for i in range(len(y_pred)):a[y_pred[i]][0].append(x[i][0])a[y_pred[i]][1].append(y[i])a = sorted(a, key=lambda x: sum(x[0]) / len(x[0]))if sum(a[0][1]) / len(a[0][1]) >= sum(a[1][1]) / len(a[1][1]) >= sum(a[2][1]) / len(a[2][1]) >= sum(a[3][1]) \/ len(a[3][1]) >= sum(a[4][1]) / len(a[4][1]) or sum(a[0][1]) / len(a[0][1]) <= sum(a[1][1]) / len(a[1][1]) \<= sum(a[2][1]) / len(a[2][1]) <= sum(a[3][1]) / len(a[3][1]) <= sum(a[4][1]) / len(a[4][1]):entro = 0for k in a:entro = entro + (- (len(k[1]) - sum(k[1])) / len(k[1]) * np.log((len(k[1]) - sum(k[1])) \/ len(k[1])) - sum(k[1]) / len(k[1]) * np.log(sum(k[1])) / len(k[1]))if entro < leastentro:leastentro = entrol = []for k in a:l.append([min(k[0]), max(k[0]), np.log((sum(k[1]) / (len(k[1]) - sum(k[1]))) / (tt_bad / tt_good)),sum(k[1]) / len(k[1])])# print (sum(k[1]),len(k[1]))if len(l) == 0:return 0else:dvars[item] = []scores[item] = []df_woe[item] = [0.0] * len(y_pred)print('\n', "Variable:", item, ": has ", len(l), "categories")for m in l:print("span=", [m[0], m[1]], ": WOE=", m[2], "; default rate=", m[3])dvars[item].append([m[0], m[2]])scores[item].append([[m[0], m[1]], m[2]])for i in range(len(y_pred)):if m[0] <= x[i] <= m[1]:df_woe[item][i] = float(m[2])return 1def woe3(y_pred, item, df, df_woe):total_bad = sum(df['target'])total_good = len(df['target']) - total_badwoe = []for i in range(3):  # 因分成3类,故是3good, bad = 0, 0  # 每个变量未响应数和未响应数for j in range(len(y_pred)):if y_pred[j] == i:if df['target'][j] == 0:good = good + 1else:bad = bad + 1if bad == 0:bad = 1if good == 0:good = 1  # 若一个响应/不响应的也没有,就令其有一个,为避免0和inf。大数据下基本不会出现这种情况woe.append((i, np.log((bad / good) / (total_bad / total_good))))df_woe[item] = [0.0] * len(y_pred)for i in range(len(y_pred)):for w in woe:if w[0] == y_pred[i]:df_woe[item][i] = float(w[1])return woedef woe2(x_pred, item, df, df_woe):total_bad = sum(df['target'])total_good = len(df['target']) - total_badX = np.array(df[item])y_pred = KMeans(n_clusters=2, random_state=1).fit_predict(x_pred)  # 用聚类算法按变量位置分好类。已经不需要原始变量了woe = []judge = []for i in range(2):good, bad = 0, 0  # 每个变量未响应数和响应数for j in range(len(y_pred)):if y_pred[j] == i:if df['target'][j] == 0:good = good + 1else:bad = bad + 1judge.append([i, bad / (bad + good)])if bad == 0:bad = 1if good == 0:good = 1  # 若一个响应/不响应的也没有,就令其有一个,为避免0和inf。大数据下基本不会出现这种情况woe.append((i, np.log((bad / good) / (total_bad / total_good))))j0, j1 = [], []for k in range(len(y_pred)):if y_pred[k] == 0: j0.append(X[k])if y_pred[k] == 1: j1.append(X[k])jml = [[np.min(j0), np.max(j0)], [np.min(j1), np.max(j1)]]for l in range(2):judge[l].append(jml[l])judge = sorted(judge, key=lambda x: x[2])if judge[1][1] - judge[0][1] > 0:  # 违约率升序,则woe也升序woe = sorted(woe, key=lambda x: x[1])else:woe = sorted(woe, key=lambda x: x[1], reverse=True)dvars[item] = []scores[item] = []for i in range(2):# print("span=", judge[i][2], ": WOE=", woe[i][1], "; default rate=", judge[i][1])dvars[item].append([judge[i][2][0], woe[i][1]])scores[item].append([judge[i][2], woe[i][1]])df_woe[item] = [0.0] * len(y_pred)for i in range(len(y_pred)):for w in woe:if w[0] == y_pred[i]:df_woe[item][i] = float(w[1])def calculate_woe(df):df_woe = pd.DataFrame()  # 构建一个用于存放woe的pdfor item in list(df)[1:]:  # 连续型变量,使用聚类算法分为三类X = np.array(df[item])  # 原始表格中的一列x_pred = []for it in X:x_pred.append([it])  # 为了进行聚类,对这一列进行处理 ########flag = 0print(item, len(set(item)))if len(set(X)) > 4:res = woe_more(item, df, df_woe)if res == 1:continueflag = 1if 2 < len(set(X)) and flag == 0:for num in range(10):y_pred = KMeans(n_clusters=3, random_state=num).fit_predict(x_pred)  # 用聚类算法按变量位置分好类。已经不需要原始变量了judge = []for i in range(3):  # 因分成3类,故是3 对每一列进行操作good, bad = 0, 0  # 每个变量响应数和未响应数for j in range(len(y_pred)):  # ypred是那个有012的if y_pred[j] == i:if df['target'][j] == 0:good = good + 1else:bad = bad + 1judge.append([i, bad / (bad + good)])j0, j1, j2 = [], [], []for k in range(len(y_pred)):if y_pred[k] == 0: j0.append(X[k])if y_pred[k] == 1: j1.append(X[k])if y_pred[k] == 2: j2.append(X[k])jml = [[np.min(j0), np.max(j0)], [np.min(j1), np.max(j1)], [np.min(j2), np.max(j2)]]for l in range(3):judge[l].append(jml[l])judge = sorted(judge, key=lambda x: x[2])if (judge[1][1] - judge[0][1]) * (judge[2][1] - judge[1][1]) >= 0:woe = woe3(y_pred, item, df, df_woe)print('\n', "Variable:", item, ": has 3 categories")if judge[1][1] - judge[0][1] > 0:  # 违约率升序,则woe也升序woe = sorted(woe, key=lambda x: x[1])else:woe = sorted(woe, key=lambda x: x[1], reverse=True)dvars[item] = []scores[item] = []for i in range(3):print("span=", judge[i][2], ": WOE=", woe[i][1], "; default rate=", judge[i][1])dvars[item].append([judge[i][2][0], woe[i][1]])scores[item].append([judge[i][2], woe[i][1]])flag = 1breakif flag == 0:print('\n', "Variable:", item, ": has 2 categories")woe2(x_pred, item, df, df_woe)else:print('\n', "Variable:", item, ": must be 2 categories")woe2(x_pred, item, df, df_woe)df_woe['target'] = df['target']tar = df_woe['target']df_woe.drop(labels=['target'], axis=1, inplace=True)df_woe.insert(0, 'target', tar)return (df_woe)def calculate_iv(df):  # 计算iv值,返回一个包含列名及其对应iv值的listiv = []tar = df['target']tt_bad = sum(tar)tt_good = len(tar) - tt_badfor item in list(df)[1:]:x = df[item]st = set(x)for woe in st:s = 0.0tt = len(df[df[item] == woe]['target'])bad = sum(df[df[item] == woe]['target'])good = tt - bads = s + float(bad / tt_bad - good / tt_good) * woe  # tt_bad=700,tt_good=300,坏:好=7:3iv.append([item, s])return sorted(iv, key=lambda x: x[1])def filt_by_iv(df, method, alpha):  # 根据iv值大小筛选可供使用的变量,默认为20个iv_list = calculate_iv(df)vars_to_use = []if method == "thres":for item in iv_list:if item[1] > alpha:vars_to_use.append(item[0])if method == "number":for i in range(alpha):vars_to_use.append(iv_list[-i - 1][0])vars_to_use.append('target')vars_to_use.reverse()print("the list after iv is: ")print(vars_to_use)return df[vars_to_use]def calculate_pear(x, y, thres=0.8):r = ((np.dot(x - np.mean(x), y - np.mean(y)) / (len(x) - 1)) / np.sqrt((np.cov(x) * np.cov(y))))  # 相关系数if abs(r) > thres:return 1return 0def remove_pear(df, iv_list, thres=0.8):  # 两两比较变量的线性相关性,若pearson相关系数大于thres就将排序靠后的变量剔除,默认thres=0.8var_set = set(list(df))length = len(var_set)signals = [0] * lengthivd = {}for item in iv_list:ivd[item[0]] = item[1]# 若相关性大,就在s这个list中对其做标记flag_list = list(var_set)for i in range(length):for j in range(i + 1, length):flag = calculate_pear(df.iloc[:, i], df.iloc[:, j], thres)if flag == 1:if flag_list[i] in ivd and flag_list[j] in ivd:if ivd[flag_list[i]] < ivd[flag_list[j]]:signals[i] = 1else:signals[i] = 1# st是所需的集合,要从中移除相关性大的变量for i in range(length):j = length - 1 - iif signals[j] == 1:var_set.remove(flag_list[j])print("the list after pearson is:", list(var_set))return list(var_set)  # 返回去除完变量后的listdef remove_vif(df, list_after_pear, list_len=20, thres=5.0):the_set = set(list_after_pear)while True:the_list = list(the_set)new_score = []for i in range(1, len(the_list)):new_df = df.drop([the_list[i]], axis=1)new_ar = np.array(new_df)new_score.append([i, variance_inflation_factor(new_ar, 0)])m = sorted(new_score, key=lambda x: x[1], reverse=True)[0]  # [最小的label,最小的数]score = m[1]if list_len == 0:if score < float(thres):breakif list_len != 0:if score < float(thres) or len(the_set) < list_len:breakthe_set.remove(the_list[m[0]])final_list = list(the_set)df_final = df[final_list]# print (df_final.head())tar = df_final.pop('target')df_final.insert(0, 'target', tar)print("the list after vif is:", list(df_final))return df_finaldef draw_roc(y_pred, y_test, ks=True):tprlist = []fprlist = []auc = 0ks_list, m1, m2, ks_value = [], [], [], 0for i in range(1, 1001):thres = 1 - i / 1000yp = []for item in y_pred:if item > thres:yp.append(1)else:yp.append(0)Nobs = len(y_test)h1 = sum(yp)t1 = sum(y_test)fn = int((sum(abs(y_test - yp)) + t1 - h1) / 2)tp = t1 - fnfp = h1 - tptn = Nobs - h1 - fnfpr = fp / (fp + tn)tpr = tp / (tp + fn)tprlist.append(tpr)fprlist.append(fpr)ks_list.append(tpr - fpr)for i in range(999):auc = auc + (fprlist[i + 1] - fprlist[i]) * tprlist[i]print("auc=", auc)plt.plot(fprlist, tprlist)plt.show()if ks:for i in range(10):m1.append(tprlist[i * 100])m2.append(fprlist[i * 100])ks_value = max(ks_list)print('ks value=', ks_value)x1 = range(10)x_axis = []for i in x1:x_axis.append(i / 10)plt.plot(x_axis, m1)plt.plot(x_axis, m2)plt.show()y_pred01 = []for item in y_pred:if item > 0.5:y_pred01.append(1)else:y_pred01.append(0)print("accuracy score=", accuracy_score(y_pred01, y_test))def logitreg(df, k=0, ks=True):x = dfx1, x0 = x[x['target'] == 1], x[x['target'] == 0]y1, y0 = x1['target'], x0['target']x1_train, x1_test, y1_train, y1_test = train_test_split(x1, y1, random_state=k)x0_train, x0_test, y0_train, y0_test = train_test_split(x0, y0, random_state=k)x_train, x_test, y_train, y_test = pd.concat([x0_train, x1_train]), pd.concat([x0_test, x1_test]), pd.concat([y0_train, y1_train]), pd.concat([y0_test, y1_test])x_train, x_test = sm.add_constant(x_train.iloc[:, 1:]), sm.add_constant(x_test.iloc[:, 1:])var = list(x_train)[1:]  # 备选listst = set()st.add("const")while True:pvs = []for item in var:if item not in st:l = list(st) + [item]xx = x_train[l]logit_mod = sm.Logit(y_train, xx)logitres = logit_mod.fit(disp=False)pvs.append([item, logitres.pvalues[item]])v = sorted(pvs, key=lambda x: x[1])[0]if v[1] < 0.05:st.add(v[0])else:breakltest = list(st)xtest = x_train[ltest]test_mod = sm.Logit(y_train, xtest)testres = test_mod.fit()for item in st:if testres.pvalues[item] > 0.05:st.remove(item)print("We have removed item:", item)print("the list to use for logistic regression:", st)luse = list(st)vars_to_del = []for item in dvars:if item not in luse:vars_to_del.append(item)for item in vars_to_del:dvars.pop(item)xuse = x_train[luse]logit_mod = sm.Logit(y_train, xuse)logit_res = logit_mod.fit()print(logit_res.summary())print("the roc and ks of train set is:")y_pred = np.array(logit_res.predict(x_test[luse]))draw_roc(y_pred, y_test, ks)print("the roc and ks of test set is:")y_ptrain = np.array(logit_res.predict(x_train[luse]))draw_roc(y_ptrain, y_train, ks)return logit_res, lusedef cal_score(res, x, dvars, q=600, p=20):x = x.loc[:, var_list]params = res.params  # 回归得到的参数const = params['const']c = pd.DataFrame([1])for item in var_list:if item != 'const':for i in range(1, len(dvars[item])):if float(x[item]) < dvars[item][i][0]:c[item] = dvars[item][i - 1][1]breakif float(x[item]) >= dvars[item][-1][0]:c[item] = dvars[item][-1][1]breakc = c.rename(columns={0: "const"})res = float(logitres.predict(c))# print("the result of prediction is:", float(logitres.predict(c)))score = q - p / np.log(2) * np.log((1 - res) / res)# print("the credit score is:", score)return (res, score)def get_score(scores, p=20):for item in scores:for k in scores[item]:k[1] = k[1] * p / np.log(2)return scoresdvars = {}
scores = {}
df = pd.read_excel("german.xlsx")
df_of_woe = calculate_woe(df)  # 计算woedf_of_woe.to_excel("german_woe.xlsx")  # 将得到的woe储存
df_of_woe = pd.read_excel("german_woe.xlsx")
iv_list = calculate_iv(df_of_woe)
df_after_iv = filt_by_iv(df_of_woe, 'number', 20)  # 根据iv值选取留下的变量
df_after_pear = remove_pear(df_after_iv, iv_list, 0.1)  # 根据pearson相关系数去除线性相关性较高的变量
df_after_vif = remove_vif(df_of_woe, df_after_pear, 0, 5)  # 根据vif剔除变量,最少剩20个######
logitres, var_list = logitreg(df_after_vif, 0, ks=True)
# joblib.dump(logitres, 'logitres.pkl')
# logitmodel = joblib.load('logitres.pkl')
# dvars:{'Account Balance': [[1, -0.81809870569494136], [2, -0.26512918778930789], [4, 1.1762632228981755]], 'Duration of Credit (month)': [[4, 0.49062291644847106], [18, -0.10423628844554551], [33, -0.76632879785353658]], 'Payment Status of Previous Credit': [[0, -1.2340708354832155], [2, -0.088318616977396236], [3, 0.50972611843257376]], 'Purpose': [[0, 0.077650934230066068], [5, -0.30830135965451672]], 'Credit Amount': [[250, 0.20782931634116719], [3832, -0.33647223662121289], [8858, -1.0624092400041492]], 'Value Savings/Stocks': [[1, -0.27135784446283229], [2, 0.14183019543921782], [4, 0.77780616879129605]], 'Length of current employment': [[1, -0.43113746316229135], [3, -0.032103245384417431], [4, 0.29871666717548989]], 'Instalment per cent': [[1, 0.1904727690246609], [3, 0.064538521137571164], [4, -0.15730028873015464]], 'Sex & Marital Status': [[1, -0.26469255422708216], [3, 0.16164135155641582]], 'Guarantors': [[1, -0.027973852042406294], [3, 0.58778666490211906]], 'Duration in Current address': [[1, -0.017335212001545787], [3, 0.013594092097163191]], 'Most valuable available asset': [[1, 0.46103495926297511], [2, -0.028573372444056114], [3, -0.21829480143299645]], 'Age (years)': [[19, -0.062035390919452635], [41, 0.17435338714477774]], 'Concurrent Credits': [[1, -0.4836298809575007], [2, -0.45953232937844019], [3, 0.12117862465752169]], 'Type of apartment': [[1, -0.40444522020741891], [2, 0.096438848095699109]], 'No of Credits at this Bank': [[1, -0.074877498932750475], [2, 0.1157104960544109], [3, 0.33135713595444244]], 'Occupation': [[1, 0.078471615441495099], [3, 0.022780028331819906], [4, -0.20441251460814672]], 'No of dependents': [[1, -0.0028161099996421362], [2, 0.015408625352845061]], 'Telephone': [[1, -0.064691321198988669], [2, 0.098637588071948196]], 'Foreign Worker': [[1, -0.034867268795640227], [2, 1.262915339959386]]}x = df.iloc[2:3, 1:]  # 从原始数据集中选取一个观测
print("x for test:", x)  # 打印出来看一眼
x_score = cal_score(logitres, x, dvars, q=600, p=30)  # 得到这个x对应的预测值(01之间)以及得分。
# 默认概率为0.5时为600分,p/1-p每翻一倍多30分
print("x_score:", x_score)
credit_score = (get_score(scores, 30))  # 得到每个变量在不同区间时对应的分数
print("credit score list:", credit_score)def get_q(df):s0 = []s1 = []q = []for i in range(len(df)):x = df.iloc[i:i + 1, :]y = int(x['target'])x = x.iloc[:, 1:]score1 = cal_score(logitres, x, dvars, q=600, p=30)if y == 1:s1.append(score1)q.append([score1[0], score1[1], 1])if y == 0:s0.append(score1[1])q.append([score1[0], score1[1], 0])return qdef get_graph(q):ss = []sum_bad = 0for item in q:ss.append(item[1])sum_bad = sum_bad + item[2]smin = int(min(ss) - 1)smax = int(max(ss) + 1)d = (smax - smin) / 10sscores, xais, tp, fp, rate = [], [], [], [], []for i in range(10):sscores.append(int(smin + i * d))sscores.append(smax)g, b = 0, 0pdf = pd.DataFrame(columns=["good_count", "bad_count", "total", "default_rate", "total_percent", "inside_good_percent","inside_bad_percent", "cum_bad", "cum_good", "cum_bad_percent", "cum_good_percent", "ks"])for i in range(10):lower = sscores[i]upper = sscores[i + 1]good = 0bad = 0for item in q:if item[1] < upper and item[1] >= lower:if item[2] == 1: bad = bad + 1if item[2] == 0: good = good + 1b = b + badg = g + goodpdf.loc["[" + str(lower) + "," + str(upper) + ")"] = [good, bad, good + bad, bad / (bad + good),(bad + good) / len(q), good / (len(q) - sum_bad),bad / sum_bad, b, g, b / sum_bad, g / (len(q) - sum_bad), b / sum_bad - g / (len(q) - sum_bad)]xais.append("[" + str(lower) + "," + str(upper) + ")")tp.append(b / sum_bad)fp.append(g / (len(q) - sum_bad))rate.append(bad / (bad + good))print(xais)plt.plot(tp)plt.plot(fp)plt.xticks(range(10), xais, rotation=45, fontsize=12)plt.show()plt.plot(rate)plt.xticks(range(10), xais, rotation=45, fontsize=12)plt.show()return (pdf)def get_psi(q, df, logitres, dvars, k=600, l=30):  # 需要调用cal_score函数,所以要包含cal_score函数中的参数 ,k,logitres,x,dvars,q=600,p=30x = df.iloc[:, 1:]x = sm.add_constant(x)y = df['target']x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0)ss, sscores, train_list, test_list = [], [], [0] * 10, [0] * 10for item in q:ss.append(item[1])smin = int(min(ss) - 1)smax = int(max(ss) + 1)d = (smax - smin) / 10for i in range(10):sscores.append(int(smin + i * d))sscores.append(smax)for i in range(len(x_train)):score = cal_score(logitres, x.iloc[i:i + 1, 1:], dvars, q=k, p=l)[1]for j in range(10):if score < sscores[j + 1] and score >= sscores[j]:train_list[j] = train_list[j] + 1for i in range(len(x_test)):score = cal_score(logitres, x.iloc[i:i + 1, 1:], dvars, q=k, p=l)[1]for j in range(10):if score < sscores[j + 1] and score >= sscores[j]:test_list[j] = test_list[j] + 1tr_list, te_list = [], []for item in train_list:tr_list.append(item / sum(train_list))for item in test_list:te_list.append(item / sum(test_list))ddf = pd.DataFrame(columns=["train_scope", "train_percent", "test_scope", "test_percent", "PSI"])for i in range(10):if te_list[i] == 0:ddf.loc[i] = ["[" + str(sscores[i]) + "," + str(sscores[i + 1]) + ")", tr_list[i],"[" + str(sscores[i]) + "," + str(sscores[i + 1]) + ")",te_list[i], np.inf]if te_list[i] != 0:ddf.loc[i] = ["[" + str(sscores[i]) + "," + str(sscores[i + 1]) + ")", tr_list[i],"[" + str(sscores[i]) + "," + str(sscores[i + 1]) + ")",te_list[i], 2.3 * (tr_list[i] - te_list[i]) * np.log(tr_list[i] / te_list[i])]return (ddf)q = get_q(df)
print(get_graph(q))
print(get_psi(q, df, logitres, dvars))

  

博主的Python视频教学中心:
https://m.study.163.com/user/1135726305.htm?utm_campaign=share&utm_medium=iphoneShare&utm_source=weixin&utm_u=1015941113

逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战相关推荐

  1. 逻辑回归实战--美国挑战者号飞船事故_同盾分数与多头借贷Python建模

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  2. qq纵横四海源码_【0基础】纵横中文网python爬虫实战

    原文在此~ [0基础]纵横中文网python爬虫实战​mp.weixin.qq.com 大家好,我是你们的机房老哥! 在粉丝群的日常交流中,爬虫是比较常见的话题.python最强大的功能之一也是爬虫. ...

  3. 全面解析并实现逻辑回归(Python)

    本文以模型.学习目标.优化算法的角度解析逻辑回归(LR)模型,并以Python从头实现LR训练及预测. 一.逻辑回归模型结构 逻辑回归是一种广义线性的分类模型且其模型结构可以视为单层的神经网络,由一层 ...

  4. 斯坦福大学机器学习第四课“逻辑回归(Logistic Regression)”

    斯坦福大学机器学习第四课"逻辑回归(Logistic Regression)" 本次课程主要包括7部分: 1) Classification(分类) 2) Hypothesis R ...

  5. 逻辑回归 python_深入研究Python的逻辑回归

    逻辑回归 python Classification techniques are an essential part of machine learning and data science app ...

  6. 逻辑回归三部曲——逻辑回归项目实战(信贷数据+Python代码实现)

         逻辑回归已经在各大银行和公司都实际运用于业务,已经有很多前辈写过逻辑回归.本文将从我实际应用的角度阐述逻辑回归的由来,致力于让逻辑回归变得清晰.易懂.逻辑回归又叫对数几率回归,是一种广义线性 ...

  7. 逻辑回归Logistic Regression 模型简介

    逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛.本文作为美团机器学习InAction系列中的一篇,主要关注逻辑回归算法的数学模 ...

  8. 机器学习第四章之逻辑回归模型

    逻辑回归模型 4.1 逻辑回归模型算法原理 4.1.1 逻辑回归模型的数学原理(了解) 4.1.2 逻辑回归模型的代码实现(重要) 4.1.3 逻辑回归模型的深入理解 4.2 案例实战 - 股票客户流 ...

  9. 逻辑回归三部曲——逻辑回归(logistics regression)原理-让你彻底读懂逻辑回归

         逻辑回归已经在各大银行和公司都实际运用于业务,已经有很多前辈写过逻辑回归.本文将从我实际应用的角度阐述逻辑回归原理,致力于让逻辑回归变得清晰.易懂.逻辑回归又叫对数几率回归,是一种广义的线性 ...

最新文章

  1. CSS深入理解学习笔记之z-index
  2. Python爬虫开发:opener的使用案例
  3. Android Activity标签属性
  4. AmazeUI基本样式
  5. 2044. 统计按位或能得到最大值的子集数目
  6. realm android,Realm for Android快速入门教程
  7. varnish与squid比较
  8. 机器学习入门——详解主成分分析
  9. python数据结构与算法 pdf_数据结构与算法:Python语言描述.pdf
  10. 【前端学习笔记】微信小程序vue 组件式开发
  11. 【转载】springboot集成SMS发送短信
  12. 德国自动驾驶与电动出行趋势进展
  13. [渝粤教育] 南昌大学 生物化学 参考 资料
  14. ES6 数组函数forEach()、map()、filter()、find()、every()、some()、reduce()
  15. win10计算机网络共享打不开,win10系统网络和共享中心打不开的详细方案
  16. 动态表格的实现(layui动态表格实现)
  17. 18771:奶牛的草(multimap)
  18. 关于python中的字符串映射转换
  19. ArangoDB——AQL编辑器
  20. Android直播头像动画,iOS 仿抖音直播头像缩放动画

热门文章

  1. 一步一步学Spring Boot(三)
  2. jenkins系列:获取jenkins 指定job最新结果并解析日志,整合成测试报告并发送邮件
  3. python爬取股票行情_python爬取历史所有股票价格
  4. MUX实现不同的门电路功能
  5. 如何理解goto语句
  6. Flutter应用架构之BloC模式实践
  7. 上海居转户 计算机中级职称,上海居转户中级经济师申请条件
  8. 个人学习笔记——Python篇(基础)
  9. python画点连线_python matplotlib 在指定的两个点之间连线方法
  10. Unreal:还你一个真实的“虚幻”