1. WGS84与WGS84 Web Mercator

1.1 关于WGS1984投影坐标系

UTM (Universal Transverse Mercator)坐标系是由美国军方在1947提出的。虽然我们仍然将其看作与“高斯-克吕格”相似的坐标系统,但实际上UTM采用了网格的分带(或分块)。除在美国本土采用Clarke 1866椭球体以外,UTM在世界其他地方都采用WGS84。
UTM是由美国制定,因此起始分带并不在本初子午线,而是在180度,因而所有美国本土都处于0-30带内。UTM投影采用6度分带,从东经180度(或西经180度)开始,自西向东算起,因此1带的中央经线为-177(-180 -(-6)),而0度经线为30带和31带的分界,这两带的分界分别是-3和3度。纬度采用8度分带,从80S到84N共20个纬度带(X带多4度),分别用C到X的字母来表示。为了避免和数字混淆,I和O没有采用。UTM的“false easting”值为500km,而南半球UTM带的“false northing”为10000km
在arcgis中打开WGS1984投影文件,仔细看看,我们可以发现里面中有三种不同的投影文件:如下:
WGS1984 BLM Zone 14N(ftvs).prj
WGS 1984 Complex UTM Zone 20N.prj (该处由20N——30N)
WGS 1984 UTM Zone 9s.prj(该处由9s——60s)此处的S代表南半球,同样北半球有同样的变化
1.UTM投影
UTM投影全称为“通用横轴墨卡托投影”,英文名称为Universal Transverse Mercator,是一种等角横轴割圆柱投影,圆柱割地球于南纬80度、北纬84度两条等高圈,被许多国家用作地形图的数学基础,如中国采用的高斯-克吕格投影就是UTM投影的一种变形,很多遥感数据,如Landsat和Aster数据都应用UTM投影发布的。
UTM投影将北纬84度和南纬80度之间的地球表面积按经度6度划分为南北纵带(投影带)。从180度经线开始向东将这些投影带编号,从1编至60(北京处于第50带)。每个带再划分为纬差8度的四边形。两条标准纬线距中央经线为180KM左右,中央经线比例系数为0.9996.
UTM北半球投影北伪偏移为零,南半球则为10000公里。
2.在ArcGIS中UTM投影坐标文件名的N和S的区别
N代表北半球,S代表南半球,文件内容的区别在与参数False_Northing 北伪偏移值,如下图所示:
3.中国UTM投影带号
中国国境所跨UTM带号为43-53
我国的疆域范围:
最西端 北纬39度15分、东经73度33分
最北端 北纬53度33.5分 东经124度27分
最南点,处北纬3°51′,东经112°16′
最东端 北纬47度27.5分 东经134度46.5分
4.UTM投影带号计算
如WGS_1984_UTM_Zone_49N,这个49的计算方法:
49:从180度经度向东,每6度为一投影带,第49个投影带
49=(114+180)/6,这个114为49投影带的最大经线

1.2 Web Mercator

EPSG,即 European Petroleum Standards Group 欧洲石油标准组织

在ArcGIS 10中Web Mercator有三种EPSG编号。他们分别是EPSG3857 、EPSG102100。

EPSG102113。其实三者表示同一个投影,而这个投影跟谷歌以及Open Street Map等使用的投影EPSG:900913是一致的,只是这个编号以前人们使用的时候并没有被EPSG组织采纳。

以下是这几个编号代表的投影在ArcGIS中的元数据信息:(其中EPSG3857 EPSG102100 完全相同,EPSG102113稍有差异)

EPSG3857     -  WGS_1984_Web_Mercator_Auxiliary_Sphere

EPSG102100  - WGS_1984_Web_Mercator_Auxiliary_Sphere

PROJCS["WGS_1984_Web_Mercator_Auxiliary_Sphere", GEOGCS["GCS_WGS_1984", DATUM["D_WGS_1984", SPHEROID["WGS_1984", 6378137.0, 298.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree", 0.0174532925199433]], PROJECTION["Mercator_Auxiliary_Sphere"], PARAMETER["False_Easting", 0.0], PARAMETER["False_Northing", 0.0], PARAMETER["Central_Meridian", 0.0], PARAMETER["Standard_Parallel_1", 0.0], PARAMETER["Auxiliary_Sphere_Type", 0.0], UNIT["Meter", 1.0]
]

EPSG102113     WGS_1984_Web_Mercator 

PROJCS["WGS_1984_Web_Mercator",GEOGCS["GCS_WGS_1984_Major_Auxiliary_Sphere",
DATUM["D_WGS_1984_Major_Auxiliary_Sphere",SPHEROID["WGS_1984_Major_Auxiliary_Sphere",6378137.0,0.0]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Mercator"],PARAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER["Standard_Parallel_1",0.0],UNIT["Meter",1.0]
]

1.3 Web Mercator 的定义

我们知道,地理数据的坐标系一般有两大类,一是地理坐标系(GCS),是经纬度单位的椭球坐标系;二是投影坐标系(PCS),是平面直角坐标系。

投影坐标系(PCS)的定义一般会包含两方面的定义信息:
(1)基准面/Datum — 与GCS相应
(2)投影方法/Projection Method

Web Mercator 是一个投影坐标系统,其基准面是 WGS 1984 。

那么,第一个问题,WGS 1984 是什么?

“ 世界大地坐标系是美国国防部制图局(Defence Mapping Agency, DMA)为统一世界大地坐标系统,实现全球测量标准的一致性,定义用于制图、大地、导航的坐标基准。它包括标准地球坐标框架、用于处理原始观测数据的标准椭球参考面(即基准和参考椭球)和定义标准海平面的重力等势面(大地水准面)。……”(摘自《大地坐标系统及其应用》)

在上面一段中可以知道,定义一个坐标系绝对是一个复杂浩大的数学工程。 我们经常听说的 WGS 1984 (或 WGS 84)就是其中一个世界大地坐标系统。我们经常使用的 GPS 的坐标参考系统也是它。

WGS 1984 的具体定义参数:

GCS_WGS_1984
WKID: 4326 Authority: EPSG

Angular Unit: Degree (0.0174532925199433)
Prime Meridian: Greenwich (0.0)
Datum: D_WGS_1984
Spheroid: WGS_1984
Semimajor Axis: 6378137.0
Semiminor Axis: 6356752.314245179
Inverse Flattening: 298.257223563

通过参数描述,我们知道 WGS 1984 是一个长半轴(a)为6378137,短半轴(b)为6356752.314245179 的椭球体,扁率(f)为298.257223563,f=(a-b)/a 。

Web Mercator 坐标系使用的投影方法不是严格意义的墨卡托投影,而是一个被 EPSG(European Petroleum Survey Group)称为伪墨卡托的投影方法,这个伪墨卡托投影方法的大名是 Popular Visualization Pseudo Mercator,PVPM。 看起来就觉得这个投影方法不是很严谨的样子,大众化的?受欢迎的?可视化伪墨卡托投影……

因为这个坐标系统是 Google Map 最先使用的,或者更确切地说,是Google 最先发明的。在投影过程中,将表示地球的参考椭球体近似的作为正球体处理(正球体半径 R = 椭球体半长轴 a)。这也是为什么在 ArcGIS 中我们经常看到这个坐标系叫 WGS 1984 Web Mercator (Auxiliary Sphere)。Auxiliary Sphere 就是在告知你,这个坐标在投影过程中,将椭球体近似为正球体做投影变换,虽然基准面是WGS 1984 椭球面。

后来,Web Mercator 在 Web 地图领域被广泛使用,这个坐标系就名声大噪。尽管这个坐标系由于精度问题一度不被GIS专业人士接受,但最终 EPSG 还是给了 WKID:3857。

1.4 两者的区别

WGS84坐标系
1、WGS84是地心坐标系,空间直角坐标系,原点与地球质心重合,为GPS采用的坐标系;
2、通过GPS可以直接获取WGS84下的坐标(B,L,H),B为纬度,L为经度,H为大地高即到WGS84椭 球面的高度;
3、我国地图采用的是北京1954或西安1980坐标系下的高斯投影坐标(x,y),也有采用北京1954或西安1980坐标系下的经纬度坐标(B,L),高程一般为海拔高度;
4、GPS的测量结果与北京54或西安80坐标相差几十米到一百多米,随区域各异;
WGS84 Web Mercator:
1、谷歌地图(WGS_1984_Pseudo_mercator)、Virtual Earth、Bing Maps、百度地图、Mapabc、ArcGIS Online等采用Web Mercator或Spherical Mercator坐标系,天地图采用CGCS2000国家大地坐标系;
2、Web Mercator与常规墨卡托投影的主要区别就是把地球模拟为球体而非椭球体;
3、为什么选择墨卡托投影?等角正轴圆柱投影,等角保证了对象的形状不变形,也保证了方向和相互位置的正确性(在航海、航空中应用),等角的代价是面积的巨大变形,特别是两极地区;
4、WebGIS开发经常碰到坐标系互转,如底图使用Web Mercator,定位(GPS,wifi等)信号坐标为WGS84坐标,代码实现如下:
//经纬度转Wev墨卡托

dvec3 CMathEngine::lonLat2WebMercator(dvec3  lonLat)
{dvec3  mercator;double x = lonLat.x *20037508.34/180;double y = log(tan((90+lonLat.y)*PI/360))/(PI/180);y = y *20037508.34/180;mercator.x = x;mercator.y = y;return mercator ;
}
//Web墨卡托转经纬度
dvec3 CMathEngine::WebMercator2lonLat( dvec3   mercator )
{dvec3 lonLat;double x = mercator.x/20037508.34*180;double y = mercator.y/20037508.34*180;y= 180/PI*(2*atan(exp(y*PI/180))-PI/2);lonLat.x = x;lonLat.y = y;return lonLat;
}

2. 从WGS84到WGS84 Web Mercator

对于非地理专业的开发人员,对与这些生涩的概念,我们不一定都要了解,但是我们要理解,凡是以经纬度为单位的都是地理坐标系,因为它归根结底是一个椭球体,只不过各个国家为了反映该国家所在区域地球的真实形状,而采用不同的数学模型对本不是椭球体的地球进行椭球体化。而投影坐标系,是对地理坐标系按照某种方式投影到平面上的,所以可以认为它是一个平面坐标系,单位自然是米或千米。

我们在做开发的时候,尤其是web地图开发,两种坐标系至关重要4326 GCS_WGS_1984 和 102100WGS_1984_web_mercator_auxiliary_sphere 。

1)、4326 GCS_WGS_1984 是WGS1984,属于地理坐标系,相信大家对它都有所耳闻,他就是大名鼎鼎的gps采用的坐标系,也就是通过gps拿到的坐标信息都是按这个坐标系给我们的经度和纬度。当然,如果你是做移动平台上的gps,获得的经纬度也是按这个坐标系。

2)、102100 WGS_1984_web_mercator_auxiliary_sphere则是目前在线地图采用的通用坐标系,属于投影坐标系。

如果我们采用googlemap做底图,然后想通过gps将位置在地图上显示,不经过任何转换直接在googlemap上显示是不行的,因为他们的坐标系不统一。所以在显示之前就必须将gps获取点进行坐标转换到WGS_1984_web_mercator,然后在googlemap上显示。

在我们的实际应用中,经常用到SpatialReference空间参考系,我们大都用的是WKID=4326的D_WGS_1984的地理坐标,而由于需要,向之前的一篇博文中介绍的,叠加Google Map地图的话,就涉及到将我们现有的地图从WKID=4326的地理坐标系转换成WKID=102100的投影坐标系,怎么转换?

ArcMap中的工具箱中有这样的工具,以下截图详细说明:

1、打开已有的地图,并打开工具箱

2、按照箭头指向,依次展开节点后,选择“Project”工具,如下:

3、在打开的Project窗口中,选择输出的空间坐标系统,然后,点击“Select”,如下图:

4、选择“Projected Coordinate System”,如下图:

5、选择“World”,点击“Add”,如下图:

6、找到WGS 1984 Web Mercator.prj,点击“Add”,如下图:

7、在下拉框中,选择仅有的一项,然后点击“OK”,至此已经完成(这里请注意:请记住Output Dataset or Feature Class中的位置,那是转换后的输出shp位置)

8、关闭ArcMap,重新打开ArcMap,并Add Data上一步中转换后的那个图层shp文件,此时的图层已经是墨卡托坐标系了。

参考文章

WGS1984 -UTM投影问题

WGS84与WGS84 Web Mercator的区别

ArcGIS中利用ArcMap将地理坐标系转换成投影坐标系(从WKID=4326到WKID=102100)

Web Mercator 公开的小秘密

WGS84与WGS84 Web Mercator相关推荐

  1. [转]地理投影,常用坐标系详解、WGS84、WGS84 Web墨卡托、WGS84 UTM、北京54坐标系、西安80坐标系、CGCS2000坐标系...

    转自:http://www.rivermap.cn/docs/show-1829.html 常用坐标系详解 (一)WGS84坐标系 WGS-84坐标系(World Geodetic System一19 ...

  2. 【GIS坐标系介绍】WGS84坐标系、Web墨卡托、GCJ02坐标系、BD09坐标系

    目录 地球坐标系与投影坐标系的区别 WGS84坐标系.Web墨卡托.GCJ02坐标系.BD09坐标系区别以及使用的地图 1.WGS84 无偏移 2.CGCS2000 无偏移 3.GCJ02坐标 偏移 ...

  3. WGS 1984 Web Mercator 对于在线地图服务的意义

       WGS 1984是3S应用的常用大地坐标系之一,和我们的生活息息相关,最典型的应用莫过于手持设备的GPS模块,无论是美国GPS全球卫星定位系统.俄罗斯 GLONASS.欧盟GALILEO,还是中 ...

  4. 谷歌和ESRI眼中的Web Mercator

    网上已经有好多作者都不吝笔墨,写了好多有关 Web Mercator这个坐标系的前世今生.多搜罗多摄入,我们会得到很多有用的信息.今天讨论到 3758,3857,102100,900913-- 这些I ...

  5. 投影坐标系单位oracle,在Oracle Spatial中增加Web Mercator投影坐标系

    参考资料: 1. 最重要的参考文章,基本上就是按这个做的!!!:https://www.inf.unibz.it/dis/wiki/doku.php?id=students:minnerebner:o ...

  6. WGS84与Web Mercator

    什么是墨卡托投影? 墨卡托(Mercator)投影,又名"等角正轴圆柱投影",荷兰地图学家墨卡托(Mercator)在1569年拟定,假设地球被围在一个中空的圆柱 里,其赤道与圆柱 ...

  7. leaflet Web Mercator坐标和WGS84坐标 转换

    在使用leaflet的时候,有些业务数据的坐标是 WebMercator坐标,leaflet的坐标是WGS84的,并没在leaflet里发现有方法供转换.使用开源的 坐标转换类库(pro4j.js)可 ...

  8. Java各坐标系之间的转换(高斯、WGS84经纬度、Web墨卡托、瓦片坐标)

    本文整理了一些地理坐标系之间的转换(Java代码) pom依赖 <dependency><groupId>com.vividsolutions</groupId>& ...

  9. 关于坐标系、投影与瓦片切片(Web墨卡托,WGS84,CGCS2000,TMS,谷歌XYZ)

    地理学的人掌握坐标系和投影知识就应该像计算机的人掌握计算机原理和操作系统原理一样,但近几年工作发现很少有人能说清楚这些皮毛. 此文将包含:地理坐标系.投影方法.切片规则等内容,内容可能来自网络.书籍和 ...

最新文章

  1. Oracle数据库日常维护
  2. MongoDB 查询超时异常 SocketTimeoutException
  3. uni-app-页面结构
  4. 5y计算机应用基础题库,数学log练习题和答案.doc
  5. HandlerInterceptorAdapter或HandlerInterceptor的使用
  6. 治疗拖延症晚期患者的三张处方
  7. **加密解密基础、PKI及SSL、创建私有CA**
  8. ZZULIOJ 1123: 最佳校友
  9. Linux操作Oracle(9)——Oracle数据库导入导出方法详解 EXP IMP EXPDP IMPDP
  10. 代码重构(四):条件表达式重构规则
  11. 一键安装nginx(auto_nginx_install.sh
  12. RED-Net神经网络
  13. jQuery制作带有微信二维码扫描的页面返回顶部代码
  14. 锋利的jQuery系列一
  15. PS:教会你改【背景图颜色】
  16. c r 语言教程,R语言初级教程
  17. PC端如何使用ITunes无线连接ios手机
  18. java大话西游单机版,【大话西游】手工架设服务端+双客户端+加密解密全套工具...
  19. 谴责那些没有良知的人
  20. js截屏工具(html2anvas)

热门文章

  1. Python程序下载wyy音乐歌单/专辑
  2. PHPExcel导出
  3. java中自定义日期类_java日期操作自定义类
  4. 触发器的创建与管理实验
  5. 国内技术团队博客(全都是前端!)
  6. ride中for循环的使用_RIDE使用介绍
  7. 在Linux系统上用nmap扫描SSL漏洞的方法
  8. 一个工具简单实现简书、掘金、CSDN上一些优秀的文章保存成markdown文件
  9. c语言中6f表示的数是多少,c语言里的一些底层行为
  10. kernel根据device加载ko