对象检测是迄今为止计算机视觉中最重要的应用领域。然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少。小目标物体的定义通常有两种方式。一种是绝对尺度定义,即以物体的像素尺寸来判断是否为小目标,如在COCO数据集中,尺寸小于32×32像素的目标被判定为小目标。另外一种是相对尺度定义,即以物体在图像中的占比面积比例来判断是否为小目标,例如国际光学工程学会SPIE定义,若目标尺寸小于原图的0.12%则可以判定成小目标。
SAHI: Slicing Aided Hyper Inference(切片辅助超推理)通过图像切片的方式来检测小目标。SAHI检测过程可以描述为:通过滑动窗口将图像切分成若干区域,各个区域分别进行预测,同时也对整张图片进行推理。然后将各个区域的预测结果和整张图片的预测结果合并,最后用NMS(非极大值抑制)进行过滤。用动图表示该识别过程如下:

SAHI的官方仓库地址为:sahi。关于SAHI的使用可以阅读官方demo和官方文档:sahi-demo和sahi-docs。如果想进一步了解SAHI具体工作性能和原理,可以阅读官方发表的论文:Slicing Aided Hyper Inference and Fine-Tuning for Small Object Detection。
SAHI安装指令如下:

pip install sahi

本文所有算法展示效果和代码见:

github: Python-Study-Notes

文章目录

  • 1 SAHI使用
    • 1.1 图像切片
      • 1.1.1 单张图像切片
      • 1.1.2 COCO数据集切片
    • 1.2 图像预测
      • 1.2.1 接口介绍
      • 1.2.2 应用实例
    • 1.3 SAHI工具函数
      • 1.3.1 coco数据集制作与精度分析
      • 1.3.2 coco数据集处理
      • 1.3.3 coco数据集转换
    • 1.4 总结
  • 2 参考

1 SAHI使用

import sahi
# 打印sahi版本
print(sahi.__version__)
0.11.6

1.1 图像切片

SAHI提供了封装好的函数接口,以切分输入图像和其标注数据。切分后的子图及其标注数据可以用于识别,或者保存为本地数据以供模型训练。

1.1.1 单张图像切片

SAHI提供slice_image函数以切分单张图片及其标注文件(仅支持coco标注文件),slice_image函数接口介绍如下:

# 返回SAHI的图像分片结果类SliceImageResult
def slice_image(image: Union[str, Image.Image], # 单张图像地址或单个pillow image对象,必填参数coco_annotation_list: Optional[CocoAnnotation] = None, # coco标注文件output_file_name: Optional[str] = None, # 输出文件名前缀output_dir: Optional[str] = None, # 输出文件地址slice_height: int = None, # 子图切分高度slice_width: int = None, # 子图切分宽度overlap_height_ratio: float = None, # 子图高度间的重叠率overlap_width_ratio: float = None, # 子图宽度间的重叠率auto_slice_resolution: bool = True, # 如果没有设置slice_height和slice_width,则自动确定slice_height、slice_width、overlap_height_ratio、overlap_width_ratiomin_area_ratio: float = 0.1, # 子图中标注框小于原始标注框占比,则放弃该标注框out_ext: Optional[str] = None, # 图像后缀格式verbose: bool = False, # 是否打印详细信息
)

slice_image函数源代码位于sahi/slicing.py中,这段代码可以单步调试看看怎么运行的,主要逻辑如下:

  1. 获得pillow image图像对象

  2. 调用get_slice_bboxes函数切分图像

    • 获得切分参数
    if slice_height and slice_width:# 计算重叠像素y_overlap = int(overlap_height_ratio * slice_height)x_overlap = int(overlap_width_ratio * slice_width)
    elif auto_slice_resolution:x_overlap, y_overlap, slice_width, slice_height = get_auto_slice_params(height=image_height, width=image_width)
    
    • 循环切分图像
    # 行循环
    while y_max < image_height:# 设置起始切分坐标x_min = x_max = 0y_max = y_min + slice_height# 列循环while x_max < image_width:x_max = x_min + slice_width# 如果图像不够切分,框往左或往上移动if y_max > image_height or x_max > image_width:xmax = min(image_width, x_max)ymax = min(image_height, y_max)xmin = max(0, xmax - slice_width)ymin = max(0, ymax - slice_height)slice_bboxes.append([xmin, ymin, xmax, ymax])else:slice_bboxes.append([x_min, y_min, x_max, y_max])# 下一次切分从本次切分图像x_max-x_overlap开始x_min = x_max - x_overlapy_min = y_max - y_overlap
    
  3. 保存图片结果和标注结果,并包装返回SliceImageResult对象

以下代码演示了对单张图片进行切片,并将切分后的子图保存到本地。

展示原图

# 展示输入图片
from PIL import Image
# 图像地址:https://github.com/obss/sahi/tree/main/demo/demo_data
image_path = "image/small-vehicles1.jpeg"
img = Image.open(image_path).convert('RGB')
img

切分图片

from sahi.slicing import slice_image# 输出文件名前缀
output_file_name = "slice"
# 输出文件夹
output_dir = "result"# 切分图像
slice_image_result = slice_image(image=image_path,output_file_name=output_file_name,output_dir=output_dir,slice_height=256,slice_width=256,overlap_height_ratio=0.2,overlap_width_ratio=0.2,verbose=False,
)
print("原图宽{},高{}".format(slice_image_result.original_image_width, slice_image_result.original_image_height))
# 切分后的子图以形式:图像前缀_所在原图顶点坐标来保存文件
print("切分子图{}张".format(len(slice_image_result.filenames)))
原图宽1068,高580
切分子图15张

展示切分后的子图

import matplotlib.pyplot as plt
from PIL import Image
import math
import osaxarr_row = 3
axarr_col = math.ceil(len(slice_image_result.filenames)/axarr_row)
f, axarr = plt.subplots(axarr_row, axarr_col, figsize=(14,7))
for index, file in enumerate(slice_image_result.filenames):img = Image.open(os.path.join(slice_image_result.image_dir,file))axarr[int(index/axarr_col), int(index%axarr_col)].imshow(img)

1.1.2 COCO数据集切片

SAHI提供slice_coco函数以切分coco数据集(仅支持coco数据集)。slice_coco函数接口介绍如下:

# 返回切片后的coco标注字典文件,coco文件保存地址
def slice_coco(coco_annotation_file_path: str, # coco标注文件image_dir: str, # coco图像集地址output_coco_annotation_file_name: str, # 输出coco标注集文件名,不需要加文件类型后缀output_dir: Optional[str] = None, # 输出文件地址ignore_negative_samples: bool = False, # 是否忽略没有标注框的子图slice_height: int = 512, # 切分子图高度slice_width: int = 512, # 切分子图宽度overlap_height_ratio: float = 0.2, # 子图高度之间的重叠率overlap_width_ratio: float = 0.2, # 子图宽度之间的重叠率min_area_ratio: float = 0.1, # 如果没有设置slice_height和slice_width,则自动确定slice_height、slice_width、overlap_height_ratio、overlap_width_ratioout_ext: Optional[str] = None,  # 保存图像的扩展verbose: bool = False, # 是否打印详细信息
)

slice_coco函数源代码位于sahi/slicing.py中,这段代码可以单步调试看看怎么做的,主要逻辑如下:

  1. 读取coco文件和图片信息
  2. 循环读取coco数据集的图片,每张图片调用get_slice_bboxes函数切分图像
  3. 创建coco dict结果并保存文件

以下代码演示了对coco数据集进行切片,并将切分后的子图和标注文件保存到本地。coco数据集可以包含若干张图片,但是以下代码示例中只包含一张图片,方便演示。

展示数据集

# 展示图像
from PIL import Image, ImageDraw
from sahi.utils.file import load_json
import matplotlib.pyplot as plt
import os# coco图像集地址
image_path = "image"
# coco标注文件
coco_annotation_file_path="image/terrain2_coco.json"
# 加载数据集
coco_dict = load_json(coco_annotation_file_path)f, axarr = plt.subplots(1, 1, figsize=(8, 8))
# 读取图像
img_ind = 0
img = Image.open(os.path.join(image_path,coco_dict["images"][img_ind]["file_name"])).convert('RGBA')
# 绘制标注框
for ann_ind in range(len(coco_dict["annotations"])):xywh = coco_dict["annotations"][ann_ind]["bbox"]xyxy = [xywh[0], xywh[1], xywh[0] + xywh[2], xywh[1] + xywh[3]]ImageDraw.Draw(img, 'RGBA').rectangle(xyxy, width=5)
axarr.imshow(img)
<matplotlib.image.AxesImage at 0x210a7583250>

切分数据集

from sahi.slicing import slice_coco# 保存的coco数据集标注文件名
output_coco_annotation_file_name="sliced"
# 输出文件夹
output_dir = "result"# 切分数据集
coco_dict, coco_path = slice_coco(coco_annotation_file_path=coco_annotation_file_path,image_dir=image_path,output_coco_annotation_file_name=output_coco_annotation_file_name,ignore_negative_samples=False,output_dir=output_dir,slice_height=320,slice_width=320,overlap_height_ratio=0.2,overlap_width_ratio=0.2,min_area_ratio=0.2,verbose=False
)print("切分子图{}张".format(len(coco_dict['images'])))
print("获得标注框{}个".format(len(coco_dict['annotations'])))
indexing coco dataset annotations...Loading coco annotations: 100%|█████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 334.21it/s]
100%|████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 11.80it/s]切分子图12张
获得标注框18个

展示切分后的子图和标注框

axarr_row = 3
axarr_col = math.ceil(len(coco_dict['images']) / axarr_row)
f, axarr = plt.subplots(axarr_row, axarr_col, figsize=(10, 7))
for index, img in enumerate(coco_dict['images']):img = Image.open(os.path.join(output_dir, img["file_name"]))for ann_ind in range(len(coco_dict["annotations"])):# 搜索与当前图像匹配的边界框if coco_dict["annotations"][ann_ind]["image_id"] == coco_dict["images"][index]["id"]:xywh = coco_dict["annotations"][ann_ind]["bbox"]xyxy = [xywh[0], xywh[1], xywh[0] + xywh[2], xywh[1] + xywh[3]]# 绘图ImageDraw.Draw(img, 'RGBA').rectangle(xyxy, width=5)axarr[int(index / axarr_col), int(index % axarr_col)].imshow(img)

1.2 图像预测

1.2.1 接口介绍

SHAI提供了图像切片预测的封装接口,具体的函数接口如下:

AutoDetectionModel类

SAHI基于AutoDetectionModel类的from_pretrained函数加载深度学习模型。目前支持YOLOv5 models, MMDetection models, Detectron2 models和HuggingFace object detection models等深度学习模型库,如果想支持新的模型库,可以参考sahi/models目录下的模型文件,新建模型检测类。

模型预测

  • 基于get_prediction函数调用模型预测单张图片,也就是直接调用AutoDetectionModel类提供的模型,直接推理单张图片。

  • 基于get_sliced_prediction函数以切分图片的方式进行预测。在get_sliced_prediction函数内部会先切分图片,然后对每个子图单独进行模型推理;如果设置了对整张原图进行推理,那么也会整合原图推理的结果以增加模型精度。最后对所有的预测结果进行nms整合,相近的两个预测框也会进行合并。get_sliced_prediction函数接口如下:

def get_sliced_prediction(image,detection_model=None,slice_height: int = None,slice_width: int = None,overlap_height_ratio: float = 0.2,overlap_width_ratio: float = 0.2,perform_standard_pred: bool = True, # 是否单独对原图进行识别postprocess_type: str = "GREEDYNMM", # 合并结果的方式,可选'NMM', 'GRREDYNMM', 'NMS'postprocess_match_metric: str = "IOS", # NMS匹配方式IOU或者IOSpostprocess_match_threshold: float = 0.5, # 匹配置信度postprocess_class_agnostic: bool = False, # 在合并结果时,是否将不同类别的检测框放在一起处理verbose: int = 1, merge_buffer_length: int = None, # 低配设备使用,以加快处理auto_slice_resolution: bool = True,
)
  • 基于predict函数进行批处理,predict函数进一步封装了识别代码,如果想使用该函数,阅读predict源代码参数接口即可。

1.2.2 应用实例

直接预测图片

from sahi import AutoDetectionModel
from sahi.predict import get_prediction# 初始化检测模型,缺少yolov5代码,pip install yolov5即可
detection_model = AutoDetectionModel.from_pretrained(model_type='yolov5', # 模型类型model_path='./yolov5n.pt', # 模型文件路径confidence_threshold=0.3, # 检测阈值device="cpu",  # or 'cuda:0'
);
image = 'image/small-vehicles1.jpeg'# 获得模型直接预测结果
result = get_prediction(image, detection_model)# result是SAHI的PredictionResult对象,可获得推理时间,检测图像,检测图像尺寸,检测结果
# 查看标注框,可以用于保存为其他格式
for pred in result.object_prediction_list:bbox = pred.bbox  # 标注框BoundingBox对象,可以获得边界框的坐标、面积category = pred.category  # 类别Category对象,可获得类别id和类别名score = pred.score.value  # 预测置信度# 保存文件结果
export_dir = "result"
file_name = "res"
result.export_visuals(export_dir=export_dir, file_name=file_name)# 展示结果
from PIL import Image
import os
image_path = os.path.join(export_dir,file_name+'.png')
img = Image.open(image_path).convert('RGB')
img

切片预测图片

from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction# 初始化检测模型
detection_model = AutoDetectionModel.from_pretrained(model_type='yolov5',model_path='yolov5n.pt',confidence_threshold=0.3,device="cpu",  # or 'cuda:0'
)
image = 'image/small-vehicles1.jpeg'result = get_sliced_prediction(image,detection_model,slice_height = 256,slice_width = 256,overlap_height_ratio = 0.2,overlap_width_ratio = 0.2,perform_standard_pred = True,
)# result是SAHI的PredictionResult对象,可获得推理时间,检测图像,检测图像尺寸,检测结果
# 查看标注框,可以用于保存为其他格式
for pred in result.object_prediction_list:bbox = pred.bbox  # 标注框BoundingBox对象,可以获得边界框的坐标、面积category = pred.category  # 类别Category对象,可获得类别id和类别名score = pred.score.value  # 预测置信度# 保存文件结果
export_dir = "result"
file_name = "res"
result.export_visuals(export_dir=export_dir, file_name=file_name)
# 结果导出为coco标注形式
coco_anno = result.to_coco_annotations()
# 结果导出为coco预测形式
coco_pred = result.to_coco_predictions()# 展示结果
from PIL import Image
import os
image_path = os.path.join(export_dir,file_name+'.png')
img = Image.open(image_path).convert('RGB')
img
Performing prediction on 15 number of slices.

相对单张图片直接识别,通过切片的方式能够识别到更多的小目标。由于使用的模型是yolov5n,可以看到一些识别结果不正确,比如同一辆车在不同子图被分别识别为卡车或汽车,一种好的解决办法是将postprocess_class_agnostic参数设置为True,将不同类别的检测框放在一起进行合并,同时降低 postprocess_match_threshold以滤除结果。

image = 'image/small-vehicles1.jpeg'result = get_sliced_prediction(image,detection_model,slice_height = 256,slice_width = 256,overlap_height_ratio = 0.2,overlap_width_ratio = 0.2,perform_standard_pred = True,postprocess_match_threshold = 0.2,postprocess_class_agnostic = True,
)# 保存文件结果
export_dir = "result"
file_name = "res"
result.export_visuals(export_dir=export_dir, file_name=file_name)# 展示结果
from PIL import Image
import os
image_path = os.path.join(export_dir,file_name+'.png')
img = Image.open(image_path).convert('RGB')
img
Performing prediction on 15 number of slices.

1.3 SAHI工具函数

SAHI提供多个工具函数以处理COCO数据集,具体使用可以阅读sahi-docs-coco。

1.3.1 coco数据集制作与精度分析

以下代码创建了coco标注数据,并保存到本地

from sahi.utils.file import save_json
from sahi.utils.coco import Coco, CocoCategory, CocoImage, CocoAnnotation,CocoPrediction# 创建coco对象
coco = Coco()# 添加类
coco.add_category(CocoCategory(id=0, name='human'))
coco.add_category(CocoCategory(id=1, name='vehicle'))# 循环遍历图像
for i in range(3):# 创建单个图像coco_image = CocoImage(file_name="image{}.jpg".format(i), height=1080, width=1920)# 添加图像对应的标注coco_image.add_annotation(CocoAnnotation(# [x_min, y_min, width, height]bbox=[0, 0, 200, 200],category_id=0,category_name='human'))coco_image.add_annotation(CocoAnnotation(bbox=[200, 100, 300, 300],category_id=1,category_name='vehicle'))# 添加图像预测数据coco_image.add_prediction(CocoPrediction(score=0.864434,bbox=[0, 0, 150, 150],category_id=0,category_name='human'))coco_image.add_prediction(CocoPrediction(score=0.653424,bbox=[200, 100, 250, 200],category_id=1,category_name='vehicle')
)# 将图像添加到coco对象coco.add_image(coco_image)# 提取json标注数据,不会保存图像预测结果
coco_json = coco.json# 将json标注数据保存为json本地文件
save_json(coco_json, "coco_dataset.json")# 提取预测结果json文件,并保存到本地
predictions_array = coco.prediction_array
save_json(predictions_array, "coco_predictions.json")

当我们获得了预测数据,我们可以基于pycocotools工具分析预测数据的精度,pycocotools是目标检测必备工具,官方仓库地址为cocoapi,结果分析代码如下:

# 需要单独安装pycocotools
from pycocotools.cocoeval import COCOeval
from pycocotools.coco import COCOcoco_ground_truth = COCO(annotation_file="coco_dataset.json")
coco_predictions = coco_ground_truth.loadRes("coco_predictions.json")coco_evaluator = COCOeval(coco_ground_truth, coco_predictions, "bbox")
# 进行匹配计算
coco_evaluator.evaluate()
# 进行结果的累加
coco_evaluator.accumulate()
# 输出结果
coco_evaluator.summarize()
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.00s).
Accumulating evaluation results...
DONE (t=0.01s).Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.200Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 1.000Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.000Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.200Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.200Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.200Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.200Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.200

统计数据集标注信息

from sahi.utils.coco import Cocococo = Coco.from_coco_dict_or_path("coco_dataset.json")# 获得数据集状态,指标说明看字段名就能懂
stats = coco.stats
stats
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1504.59it/s]{'num_images': 3,'num_annotations': 6,'num_categories': 2,'num_negative_images': 0,'num_images_per_category': {'human': 3, 'vehicle': 3},'num_annotations_per_category': {'human': 3, 'vehicle': 3},'min_num_annotations_in_image': 2,'max_num_annotations_in_image': 2,'avg_num_annotations_in_image': 2.0,'min_annotation_area': 40000,'max_annotation_area': 90000,'avg_annotation_area': 65000.0,'min_annotation_area_per_category': {'human': 40000, 'vehicle': 90000},'max_annotation_area_per_category': {'human': 40000, 'vehicle': 90000}}

预测结果过滤

from sahi.utils.file import save_json
from sahi.utils.coco import remove_invalid_coco_results# 去除预测结果中的无效边界框,如边界框坐标为负的结果
coco_results = remove_invalid_coco_results("coco_predictions.json")save_json(coco_results, "fixed_coco_result.json")# 根据数据集实际标注信息,进一步去除边界框坐标超过图像长宽的结果
coco_results = remove_invalid_coco_results("coco_predictions.json", "coco_dataset.json")

1.3.2 coco数据集处理

切分数据集

from sahi.utils.coco import Coco# 指定coco文件
coco_path = "coco_dataset.json"# 初始coco对象
coco = Coco.from_coco_dict_or_path(coco_path)# 拆分数据集为训练集和验证集,训练集图像占比0.85
result = coco.split_coco_as_train_val(train_split_rate=0.85
)# 保存训练集和验证集
save_json(result["train_coco"].json, "train_split.json")
save_json(result["val_coco"].json, "val_split.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 3005.95it/s]

修改标注类别

from sahi.utils.coco import Coco
from sahi.utils.file import save_jsoncoco = Coco.from_coco_dict_or_path("coco_dataset.json")
print("标注类别:{}".format(coco.category_mapping))# 修改数据集类别
# 将标注中human类的索引改为3,将原先vehicle类的标注删除
# 新加big_vehicle类和car类
desired_name2id = {"big_vehicle": 1,"car": 2,"human": 3
}
# 更新标注类别
coco.update_categories(desired_name2id)print("修改后标注类别:{}".format(coco.category_mapping))# 保存结果
save_json(coco.json, "updated_coco.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1002.78it/s]标注类别:{0: 'human', 1: 'vehicle'}
修改后标注类别:{1: 'big_vehicle', 2: 'car', 3: 'human'}

按照标注框面积过滤数据集

from sahi.utils.coco import Coco
from sahi.utils.file import save_json# 打开标注数据
coco = Coco.from_coco_dict_or_path("coco_dataset.json")# 过滤包含标注框面积小于min的图像
area_filtered_coco = coco.get_area_filtered_coco(min=50000)
# 过滤标注框面积不在[min,max]的图像
area_filtered_coco = coco.get_area_filtered_coco(min=50, max=80000)
# 筛选同时符合多个类别面积要求的图像
intervals_per_category = {"human": {"min": 20, "max": 30000},"vehicle": {"min": 50, "max": 90000},
}
area_filtered_coco = coco.get_area_filtered_coco(intervals_per_category=intervals_per_category)# 导出数据
save_json(area_filtered_coco.json, "area_filtered_coco.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1503.69it/s]

过滤无标注的图片

from sahi.utils.coco import Coco
from sahi.utils.file import save_json
# 去除无标注框的图片
coco = Coco.from_coco_dict_or_path("coco_dataset.json", ignore_negative_samples=True)
# 导出数据
# save_json(coco.json, "coco_ignore_negative.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 3007.39it/s]

裁剪标注框

from sahi.utils.coco import Coco
from sahi.utils.file import save_jsoncoco_path = "coco_dataset.json"# 将溢出边界框剪裁为图像宽度和高度
coco = Coco.from_coco_dict_or_path(coco_path, clip_bboxes_to_img_dims=True)# 对已有coco对象,将溢出边界框剪裁为图像宽度和高度
coco = coco.get_coco_with_clipped_bboxes()save_json(coco.json, "coco.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1007.04it/s]

合并coco数据集

# from sahi.utils.coco import Coco
# from sahi.utils.file import save_json# coco_1 = Coco.from_coco_dict_or_path("coco1.json", image_dir="images_1/")
# coco_2 = Coco.from_coco_dict_or_path("coco2.json", image_dir="images_2/")# # 合并数据集
# coco_1.merge(coco_2)# # 保存
# save_json(coco_1.json, "merged_coco.json")

下采样数据集

from sahi.utils.coco import Coco
from sahi.utils.file import save_json
coco_path = "coco_dataset.json"coco = Coco.from_coco_dict_or_path(coco_path)# 用1/10的图像创建Coco对象
# subsample_ratio表示每10张图像取1张图像
subsampled_coco = coco.get_subsampled_coco(subsample_ratio=10)# 仅对包含标注框为category_id的图像进行下采样,category_i=-1时表示负样本
subsampled_coco = coco.get_subsampled_coco(subsample_ratio=10, category_id=0)# 保存数据集
save_json(subsampled_coco.json, "subsampled_coco.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1512.19it/s]

上采样数据集

from sahi.utils.coco import Coco
from sahi.utils.file import save_json
coco_path = "coco_dataset.json"coco = Coco.from_coco_dict_or_path(coco_path)# 每个样本重复10次
upsampled_coco = coco.get_upsampled_coco(upsample_ratio=10)# 仅对包含标注框为category_id的图像进行采样,category_i=-1时表示负样本
subsampled_coco = coco.get_upsampled_coco(upsample_ratio=10, category_id=0)# 导出数据集
save_json(upsampled_coco.json, "upsampled_coco.json")
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1503.51it/s]

1.3.3 coco数据集转换

导出为yolov5格式并分割数据集

from sahi.utils.coco import Coco# 注意image_dir路径
coco = Coco.from_coco_dict_or_path("coco_dataset.json", image_dir="images/")# 导出为yolov5数据集格式,train_split_rate设置训练集数据比例
# coco.export_as_yolov5(
#   output_dir="output/",
#   train_split_rate=0.85
# )
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1002.22it/s]

将训练集和验证集导出为yolov5格式

from sahi.utils.coco import Coco, export_coco_as_yolov5# 注意image_dir路径
train_coco = Coco.from_coco_dict_or_path("train_split.json", image_dir="images/")
val_coco = Coco.from_coco_dict_or_path("val_split.json", image_dir="images/")# 导出数据集
# data_yml_path = export_coco_as_yolov5(
#   output_dir="output",
#   train_coco=train_coco,
#   val_coco=val_coco
# )
indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1002.34it/s]indexing coco dataset annotations...Loading coco annotations: 100%|████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1003.42it/s]

1.4 总结

目标检测过程中,通过对高分辨率小目标图像进行滑动窗口切片,能够有效提高大分辨率小目标图像的识别精度。但是滑动切片识别有需要注意的地方:

  • 需要图像数据集是否符合通用的高分辨小目标图像标准,如果对普通数据集进行切片识别容易拆分已有目标物体,这样做浪费推理时间也会导致最终检测结果精度不高。
  • 滑动切片对识别模型的精度有一定的要求,一般来说模型越大精度越高,但是切片识别所花费的推理时间也越长。所以需要平衡模型精度和模型推理时间,而且也要确定滑动切片的尺度。
  • 滑动切片识别在识别目标类别较少的任务中,识别精度更高,因为后处理能过滤很多重复识别检测框。

如果想了解其他的小目标识别方案,可以看看paddle家的paddledetection-smalldet。paddle提供了基于原图和基于切图的小目标识别方案,也提供了统计数据集尺寸分布的代码(该统计代码对某些特定的数据集效果不好,具体原因看看代码)。推荐看看PaddleDetection的小目标识别方案,做的很不错。

2 参考

  • sahi
  • sahi-demo
  • sahi-docs
  • Slicing Aided Hyper Inference and Fine-Tuning for Small Object Detection
  • sahi/slicing.py
  • sahi/models
  • sahi-docs-coco
  • cocoapi
  • paddledetection-smalldet

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别相关推荐

  1. 贝叶斯深度学习——基于PyMC3的变分推理

    时间 2016-06-12 10:13:38CSDN 原文  http://geek.csdn.net/news/detail/80255 主题 深度学习 PyMC3 原文链接: Bayesian D ...

  2. 基于深度学习的IRS辅助MIMO通信系统的CSI压缩及恢复研究

    基于深度学习的IRS辅助MIMO通信系统的CSI压缩及恢复研究 人工智能技术与咨询 来源:<无线通信 > ,作者黄富铿等 关键词: 智能反射面:深度学习:信道状态信息反馈: 摘要: 智能反 ...

  3. 【超分辨率实验】Matlab-使用深度学习的单图像超分辨率(Single Image Super-Resolution Using Deep Learning)

    [超分辨率实验]Matlab-使用深度学习的单图像超分辨率(Single Image Super-Resolution Using Deep Learning) 此示例演示如何训练非常深的超分辨率 V ...

  4. 【超分辨率】从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程

    此文转自 知乎专栏 棉花糖的工坊 作者 棉花糖 (侵删) 一直在学习图像超分辨率和深度学习,看到此文写得很好,故此转载分享.如有侵权,私信联系我,我将作删除. 超分辨率技术(Super-Resolut ...

  5. 2023年的深度学习入门指南(5) - HuggingFace Transformers库

    2023年的深度学习入门指南(5) - HuggingFace Transformers库 这一节我们来学习下预训练模型的封装库,Hugging Face的Transformers库的使用.Huggi ...

  6. 广告深度学习计算:多媒体AI推理服务加速利器high_service

    本文作者:雨行.列宁.阿洛.腾冥.枭骑.无蹄.逍城.少奇.持信.云芑 本文是上一篇内容<广告深度学习计算:阿里妈妈智能创意服务优化>工作的进一步延伸,欢迎阅读交流. 概述 随着视频.文案. ...

  7. 超分辨率 | 综述!使用深度学习来实现图像超分辨率

    关注公众号"AI算法修炼营",选择"星标"公众号 精选作品,第一时间送达 今天给大家介绍一篇图像超分辨率邻域的综述,这篇综述总结了图像超分辨率领域的几方面:pr ...

  8. 2020-10-18 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程

    本文转自:https://blog.csdn.net/aBlueMouse/article/details/78710553 超分辨率技术(Super-Resolution, SR)是指从观测到的低分 ...

  9. 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程(转)

    超分辨率技术(Super-Resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备.卫星图像和医学影像等领域都有重要的应用价值. 本文针对端到端的基于深度学习的单张 ...

最新文章

  1. bzoj 5339 [TJOI2018]教科书般的亵渎 拉格朗日插值
  2. How To Open An URL In Android’s Web Browser
  3. Clojure入门指南(Getting Started)
  4. wpf项目源代码_C# WPF开源控件库:MahApps.Metro
  5. pytorch笔记:policy gradient
  6. [html] H5播放的video视频,如何实现对视频截图?
  7. NLP13-LDA引发的一系活动
  8. 博客搬家到 http://fresky.github.io/ - Visual Studio的插件Pdbproj可以把pdb转换成C++项目...
  9. Gse v0.40.0 发布,Go 高性能分词,增加更多常用 API
  10. 计算机一级上网题怎么创建桌面快捷方式,计算机一级上机操作题2016
  11. WorkList-Dicom字段定义
  12. 爱粤语软件:普通话和粤语转换
  13. 阿里巴巴矢量字体转Image图片(建议收藏)
  14. M1芯片,PS2022版真的来了。Photoshop 2022 for Mac中文版介绍安装教程,支持Monterey系统
  15. win7-去掉快捷方式小箭头.bat
  16. (原)android系统下绑定Server的时候报MainActivity has leaked ServiceConnection的错误
  17. INS/GNSS组合导航(十二)如何读懂MEMS惯性器件精度?
  18. C++的运算符重载 --http://blog.csdn.net/zgl_dm/article/details/1767201
  19. 计算机网络ospf实验报告,中山大学《计算机网络实验报告》10-OSPF实验.pdf
  20. 电子词典的实现(一)

热门文章

  1. Matlab三维折线图绘制–surf 函数的使用
  2. 基于全球谷歌卫星影像的大字体挂图打印制作方法
  3. 295348-87-7,Alexa Fluor 594 NHS ester,TFAX 594,SE,水溶性的红荧光染料
  4. 磊科(NetCore)全系列路由器中的“疑似后门”程序
  5. 一篇论文又是Major Revision
  6. [windows]如何打开注册表编辑器
  7. 无线电信号怎么传输的
  8. java酒吧会所预定系统ssm
  9. To 百思不录团队: 百思不录产品设计思路
  10. 海康网络摄像头rtsp转hls生成 m3u8,浏览器直播播放。