第1部分 Hashtable介绍

  和HashMap一样,Hashtable也是一个散列表,它存储的内容是键值对(key-value)映射。Hashtable继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。Hashtable的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。Hashtable的实例有两个参数影响其性能:初始容量和加载因子。容量是哈希表桶的数量,初始容量就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用rehash方法的具体细节则依赖于该实现。通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间。

第2部分 Hashtable数据结构

java.lang.Object↳     java.util.Dictionary<K, V>↳     java.util.Hashtable<K, V>public class Hashtable<K,V> extends Dictionary<K,V>implements Map<K,V>, Cloneable, java.io.Serializable { }

  Hashtable与Map关系如下图:

从图中可以看出:

  (01) Hashtable继承于Dictionary类,实现了Map接口。Map是"key-value键值对"接口,Dictionary是声明了操作"键值对"函数接口的抽象类。 
  (02) Hashtable是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, count, threshold, loadFactor, modCount。
  table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的。count是Hashtable的大小,它是Hashtable保存的键值对的数量。threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。loadFactor就是加载因子。 modCount是用来实现fail-fast机制的

第3部分 Hashtable源码解析(基于JDK1.6.0_45)

package java.util;
import java.io.*;public class Hashtable<K,V>extends Dictionary<K,V>implements Map<K,V>, Cloneable, java.io.Serializable {// Hashtable保存key-value的数组。// Hashtable是采用拉链法实现的,每一个Entry本质上是一个单向链表private transient Entry[] table;// Hashtable中元素的实际数量private transient int count;// 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)private int threshold;// 加载因子private float loadFactor;// Hashtable被改变的次数private transient int modCount = 0;// 序列版本号private static final long serialVersionUID = 1421746759512286392L;// 指定“容量大小”和“加载因子”的构造函数public Hashtable(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal Load: "+loadFactor);if (initialCapacity==0)initialCapacity = 1;this.loadFactor = loadFactor;table = new Entry[initialCapacity];threshold = (int)(initialCapacity * loadFactor);}// 指定“容量大小”的构造函数public Hashtable(int initialCapacity) {this(initialCapacity, 0.75f);}// 默认构造函数。public Hashtable() {// 默认构造函数,指定的容量大小是11;加载因子是0.75this(11, 0.75f);}// 包含“子Map”的构造函数public Hashtable(Map<? extends K, ? extends V> t) {this(Math.max(2*t.size(), 11), 0.75f);// 将“子Map”的全部元素都添加到Hashtable中
        putAll(t);}public synchronized int size() {return count;}public synchronized boolean isEmpty() {return count == 0;}// 返回“所有key”的枚举对象public synchronized Enumeration<K> keys() {return this.<K>getEnumeration(KEYS);}// 返回“所有value”的枚举对象public synchronized Enumeration<V> elements() {return this.<V>getEnumeration(VALUES);}// 判断Hashtable是否包含“值(value)”public synchronized boolean contains(Object value) {// Hashtable中“键值对”的value不能是null,// 若是null的话,抛出异常!if (value == null) {throw new NullPointerException();}// 从后向前遍历table数组中的元素(Entry)// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于valueEntry tab[] = table;for (int i = tab.length ; i-- > 0 ;) {for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {if (e.value.equals(value)) {return true;}}}return false;}public boolean containsValue(Object value) {return contains(value);}// 判断Hashtable是否包含keypublic synchronized boolean containsKey(Object key) {Entry tab[] = table;int hash = key.hashCode();// 计算索引值,// % tab.length 的目的是防止数据越界int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {return true;}}return false;}// 返回key对应的value,没有的话返回nullpublic synchronized V get(Object key) {Entry tab[] = table;int hash = key.hashCode();// 计算索引值,int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {return e.value;}}return null;}// 调整Hashtable的长度,将长度变成原来的(2倍+1)// (01) 将“旧的Entry数组”赋值给一个临时变量。// (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”// (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中protected void rehash() {int oldCapacity = table.length;Entry[] oldMap = table;int newCapacity = oldCapacity * 2 + 1;Entry[] newMap = new Entry[newCapacity];modCount++;threshold = (int)(newCapacity * loadFactor);table = newMap;for (int i = oldCapacity ; i-- > 0 ;) {for (Entry<K,V> old = oldMap[i] ; old != null ; ) {Entry<K,V> e = old;old = old.next;int index = (e.hash & 0x7FFFFFFF) % newCapacity;e.next = newMap[index];newMap[index] = e;}}}// 将“key-value”添加到Hashtable中public synchronized V put(K key, V value) {// Hashtable中不能插入value为null的元素!!!if (value == null) {throw new NullPointerException();}// 若“Hashtable中已存在键为key的键值对”,// 则用“新的value”替换“旧的value”Entry tab[] = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {V old = e.value;e.value = value;return old;}}// 若“Hashtable中不存在键为key的键值对”,// (01) 将“修改统计数”+1modCount++;// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)//  则调整Hashtable的大小if (count >= threshold) {// Rehash the table if the threshold is exceeded
            rehash();tab = table;index = (hash & 0x7FFFFFFF) % tab.length;}// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中Entry<K,V> e = tab[index];// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。        tab[index] = new Entry<K,V>(hash, key, value, e);// (05) 将“Hashtable的实际容量”+1count++;return null;}// 删除Hashtable中键为key的元素public synchronized V remove(Object key) {Entry tab[] = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”// 然后在链表中找出要删除的节点,并删除该节点。for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {modCount++;if (prev != null) {prev.next = e.next;} else {tab[index] = e.next;}count--;V oldValue = e.value;e.value = null;return oldValue;}}return null;}// 将“Map(t)”的中全部元素逐一添加到Hashtable中public synchronized void putAll(Map<? extends K, ? extends V> t) {for (Map.Entry<? extends K, ? extends V> e : t.entrySet())put(e.getKey(), e.getValue());}// 清空Hashtable// 将Hashtable的table数组的值全部设为nullpublic synchronized void clear() {Entry tab[] = table;modCount++;for (int index = tab.length; --index >= 0; )tab[index] = null;count = 0;}// 克隆一个Hashtable,并以Object的形式返回。public synchronized Object clone() {try {Hashtable<K,V> t = (Hashtable<K,V>) super.clone();t.table = new Entry[table.length];for (int i = table.length ; i-- > 0 ; ) {t.table[i] = (table[i] != null)? (Entry<K,V>) table[i].clone() : null;}t.keySet = null;t.entrySet = null;t.values = null;t.modCount = 0;return t;} catch (CloneNotSupportedException e) {// this shouldn't happen, since we are Cloneablethrow new InternalError();}}public synchronized String toString() {int max = size() - 1;if (max == -1)return "{}";StringBuilder sb = new StringBuilder();Iterator<Map.Entry<K,V>> it = entrySet().iterator();sb.append('{');for (int i = 0; ; i++) {Map.Entry<K,V> e = it.next();K key = e.getKey();V value = e.getValue();sb.append(key   == this ? "(this Map)" : key.toString());sb.append('=');sb.append(value == this ? "(this Map)" : value.toString());if (i == max)return sb.append('}').toString();sb.append(", ");}}// 获取Hashtable的枚举类对象// 若Hashtable的实际大小为0,则返回“空枚举类”对象;// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)private <T> Enumeration<T> getEnumeration(int type) {if (count == 0) {return (Enumeration<T>)emptyEnumerator;} else {return new Enumerator<T>(type, false);}}// 获取Hashtable的迭代器// 若Hashtable的实际大小为0,则返回“空迭代器”对象;// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)private <T> Iterator<T> getIterator(int type) {if (count == 0) {return (Iterator<T>) emptyIterator;} else {return new Enumerator<T>(type, true);}}// Hashtable的“key的集合”。它是一个Set,意味着没有重复元素private transient volatile Set<K> keySet = null;// Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素private transient volatile Set<Map.Entry<K,V>> entrySet = null;// Hashtable的“key-value的集合”。它是一个Collection,意味着可以有重复元素private transient volatile Collection<V> values = null;// 返回一个被synchronizedSet封装后的KeySet对象// synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步public Set<K> keySet() {if (keySet == null)keySet = Collections.synchronizedSet(new KeySet(), this);return keySet;}// Hashtable的Key的Set集合。// KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。private class KeySet extends AbstractSet<K> {public Iterator<K> iterator() {return getIterator(KEYS);}public int size() {return count;}public boolean contains(Object o) {return containsKey(o);}public boolean remove(Object o) {return Hashtable.this.remove(o) != null;}public void clear() {Hashtable.this.clear();}}// 返回一个被synchronizedSet封装后的EntrySet对象// synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步public Set<Map.Entry<K,V>> entrySet() {if (entrySet==null)entrySet = Collections.synchronizedSet(new EntrySet(), this);return entrySet;}// Hashtable的Entry的Set集合。// EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。private class EntrySet extends AbstractSet<Map.Entry<K,V>> {public Iterator<Map.Entry<K,V>> iterator() {return getIterator(ENTRIES);}public boolean add(Map.Entry<K,V> o) {return super.add(o);}// 查找EntrySet中是否包含Object(0)// 首先,在table中找到o对应的Entry(Entry是一个单向链表)// 然后,查找Entry链表中是否存在Objectpublic boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry entry = (Map.Entry)o;Object key = entry.getKey();Entry[] tab = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry e = tab[index]; e != null; e = e.next)if (e.hash==hash && e.equals(entry))return true;return false;}// 删除元素Object(0)// 首先,在table中找到o对应的Entry(Entry是一个单向链表)// 然后,删除链表中的元素Objectpublic boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();Entry[] tab = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index], prev = null; e != null;prev = e, e = e.next) {if (e.hash==hash && e.equals(entry)) {modCount++;if (prev != null)prev.next = e.next;elsetab[index] = e.next;count--;e.value = null;return true;}}return false;}public int size() {return count;}public void clear() {Hashtable.this.clear();}}// 返回一个被synchronizedCollection封装后的ValueCollection对象// synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步public Collection<V> values() {if (values==null)values = Collections.synchronizedCollection(new ValueCollection(),this);return values;}// Hashtable的value的Collection集合。// ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。private class ValueCollection extends AbstractCollection<V> {public Iterator<V> iterator() {return getIterator(VALUES);}public int size() {return count;}public boolean contains(Object o) {return containsValue(o);}public void clear() {Hashtable.this.clear();}}// 重新equals()函数// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等public synchronized boolean equals(Object o) {if (o == this)return true;if (!(o instanceof Map))return false;Map<K,V> t = (Map<K,V>) o;if (t.size() != size())return false;try {// 通过迭代器依次取出当前Hashtable的key-value键值对// 并判断该键值对,存在于Hashtable(o)中。// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。Iterator<Map.Entry<K,V>> i = entrySet().iterator();while (i.hasNext()) {Map.Entry<K,V> e = i.next();K key = e.getKey();V value = e.getValue();if (value == null) {if (!(t.get(key)==null && t.containsKey(key)))return false;} else {if (!value.equals(t.get(key)))return false;}}} catch (ClassCastException unused)   {return false;} catch (NullPointerException unused) {return false;}return true;}// 计算Hashtable的哈希值// 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。// 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。public synchronized int hashCode() {int h = 0;if (count == 0 || loadFactor < 0)return h;  // Returns zero
loadFactor = -loadFactor;  // Mark hashCode computation in progressEntry[] tab = table;for (int i = 0; i < tab.length; i++)for (Entry e = tab[i]; e != null; e = e.next)h += e.key.hashCode() ^ e.value.hashCode();loadFactor = -loadFactor;  // Mark hashCode computation completereturn h;}// java.io.Serializable的写入函数// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中private synchronized void writeObject(java.io.ObjectOutputStream s)throws IOException{// Write out the length, threshold, loadfactor
        s.defaultWriteObject();// Write out length, count of elements and then the key/value objects
        s.writeInt(table.length);s.writeInt(count);for (int index = table.length-1; index >= 0; index--) {Entry entry = table[index];while (entry != null) {s.writeObject(entry.key);s.writeObject(entry.value);entry = entry.next;}}}// java.io.Serializable的读取函数:根据写入方式读出// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出private void readObject(java.io.ObjectInputStream s)throws IOException, ClassNotFoundException{// Read in the length, threshold, and loadfactor
        s.defaultReadObject();// Read the original length of the array and number of elementsint origlength = s.readInt();int elements = s.readInt();// Compute new size with a bit of room 5% to grow but// no larger than the original size.  Make the length// odd if it's large enough, this helps distribute the entries.// Guard against the length ending up zero, that's not valid.int length = (int)(elements * loadFactor) + (elements / 20) + 3;if (length > elements && (length & 1) == 0)length--;if (origlength > 0 && length > origlength)length = origlength;Entry[] table = new Entry[length];count = 0;// Read the number of elements and then all the key/value objectsfor (; elements > 0; elements--) {K key = (K)s.readObject();V value = (V)s.readObject();// synch could be eliminated for performance
                reconstitutionPut(table, key, value);}this.table = table;}private void reconstitutionPut(Entry[] tab, K key, V value)throws StreamCorruptedException{if (value == null) {throw new java.io.StreamCorruptedException();}// Makes sure the key is not already in the hashtable.// This should not happen in deserialized version.int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {throw new java.io.StreamCorruptedException();}}// Creates the new entry.Entry<K,V> e = tab[index];tab[index] = new Entry<K,V>(hash, key, value, e);count++;}// Hashtable的Entry节点,它本质上是一个单向链表。// 也因此,我们才能推断出Hashtable是由拉链法实现的散列表private static class Entry<K,V> implements Map.Entry<K,V> {// 哈希值int hash;K key;V value;// 指向的下一个Entry,即链表的下一个节点Entry<K,V> next;// 构造函数protected Entry(int hash, K key, V value, Entry<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}protected Object clone() {return new Entry<K,V>(hash, key, value,(next==null ? null : (Entry<K,V>) next.clone()));}public K getKey() {return key;}public V getValue() {return value;}// 设置value。若value是null,则抛出异常。public V setValue(V value) {if (value == null)throw new NullPointerException();V oldValue = this.value;this.value = value;return oldValue;}// 覆盖equals()方法,判断两个Entry是否相等。// 若两个Entry的key和value都相等,则认为它们相等。public boolean equals(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry e = (Map.Entry)o;return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&(value==null ? e.getValue()==null : value.equals(e.getValue()));}public int hashCode() {return hash ^ (value==null ? 0 : value.hashCode());}public String toString() {return key.toString()+"="+value.toString();}}private static final int KEYS = 0;private static final int VALUES = 1;private static final int ENTRIES = 2;// Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。private class Enumerator<T> implements Enumeration<T>, Iterator<T> {// 指向Hashtable的tableEntry[] table = Hashtable.this.table;// Hashtable的总的大小int index = table.length;Entry<K,V> entry = null;Entry<K,V> lastReturned = null;int type;// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志// iterator为true,表示它是迭代器;否则,是枚举类。boolean iterator;// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。protected int expectedModCount = modCount;Enumerator(int type, boolean iterator) {this.type = type;this.iterator = iterator;}// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。public boolean hasMoreElements() {Entry<K,V> e = entry;int i = index;Entry[] t = table;/* Use locals for faster loop iteration */while (e == null && i > 0) {e = t[--i];}entry = e;index = i;return e != null;}// 获取下一个元素// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。// 然后,依次向后遍历单向链表Entry。public T nextElement() {Entry<K,V> et = entry;int i = index;Entry[] t = table;/* Use locals for faster loop iteration */while (et == null && i > 0) {et = t[--i];}entry = et;index = i;if (et != null) {Entry<K,V> e = lastReturned = entry;entry = e.next;return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);}throw new NoSuchElementException("Hashtable Enumerator");}// 迭代器Iterator的判断是否存在下一个元素// 实际上,它是调用的hasMoreElements()public boolean hasNext() {return hasMoreElements();}// 迭代器获取下一个元素// 实际上,它是调用的nextElement()public T next() {if (modCount != expectedModCount)throw new ConcurrentModificationException();return nextElement();}// 迭代器的remove()接口。// 首先,它在table数组中找出要删除元素所在的Entry,// 然后,删除单向链表Entry中的元素。public void remove() {if (!iterator)throw new UnsupportedOperationException();if (lastReturned == null)throw new IllegalStateException("Hashtable Enumerator");if (modCount != expectedModCount)throw new ConcurrentModificationException();synchronized(Hashtable.this) {Entry[] tab = Hashtable.this.table;int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index], prev = null; e != null;prev = e, e = e.next) {if (e == lastReturned) {modCount++;expectedModCount++;if (prev == null)tab[index] = e.next;elseprev.next = e.next;count--;lastReturned = null;return;}}throw new ConcurrentModificationException();}}}private static Enumeration emptyEnumerator = new EmptyEnumerator();private static Iterator emptyIterator = new EmptyIterator();// 空枚举类// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。private static class EmptyEnumerator implements Enumeration<Object> {EmptyEnumerator() {}// 空枚举类的hasMoreElements() 始终返回falsepublic boolean hasMoreElements() {return false;}// 空枚举类的nextElement() 抛出异常public Object nextElement() {throw new NoSuchElementException("Hashtable Enumerator");}}// 空迭代器// 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。private static class EmptyIterator implements Iterator<Object> {EmptyIterator() {}public boolean hasNext() {return false;}public Object next() {throw new NoSuchElementException("Hashtable Iterator");}public void remove() {throw new IllegalStateException("Hashtable Iterator");}}
}

View Code

  说明: 在详细介绍Hashtable的代码之前,我们需要了解:和Hashmap一样,Hashtable也是一个散列表,它也是通过“拉链法”解决哈希冲突的。
第3.1部分 Hashtable的“拉链法”相关内容

3.1.1数据节点Entry的数据结构

 1 private static class Entry<K,V> implements Map.Entry<K,V> {
 2     // 哈希值
 3     int hash;
 4     K key;
 5     V value;
 6     // 指向的下一个Entry,即链表的下一个节点
 7     Entry<K,V> next;
 8
 9     // 构造函数
10     protected Entry(int hash, K key, V value, Entry<K,V> next) {
11         this.hash = hash;
12         this.key = key;
13         this.value = value;
14         this.next = next;
15     }
16
17     protected Object clone() {
18         return new Entry<K,V>(hash, key, value,
19               (next==null ? null : (Entry<K,V>) next.clone()));
20     }
21
22     public K getKey() {
23         return key;
24     }
25
26     public V getValue() {
27         return value;
28     }
29
30     // 设置value。若value是null,则抛出异常。
31     public V setValue(V value) {
32         if (value == null)
33             throw new NullPointerException();
34
35         V oldValue = this.value;
36         this.value = value;
37         return oldValue;
38     }
39
40     // 覆盖equals()方法,判断两个Entry是否相等。
41     // 若两个Entry的key和value都相等,则认为它们相等。
42     public boolean equals(Object o) {
43         if (!(o instanceof Map.Entry))
44             return false;
45         Map.Entry e = (Map.Entry)o;
46
47         return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
48            (value==null ? e.getValue()==null : value.equals(e.getValue()));
49     }
50
51     public int hashCode() {
52         return hash ^ (value==null ? 0 : value.hashCode());
53     }
54
55     public String toString() {
56         return key.toString()+"="+value.toString();
57     }
58 }

View Code

  从中,我们可以看出Entry实际上就是一个单向链表。这也是为什么我们说Hashtable是通过拉链法解决哈希冲突的。Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。

第3.2部分 Hashtable的构造函数

 1 // 默认构造函数。
 2 public Hashtable() {
 3     // 默认构造函数,指定的容量大小是11;加载因子是0.75
 4     this(11, 0.75f);
 5 }
 6
 7 // 指定“容量大小”的构造函数
 8 public Hashtable(int initialCapacity) {
 9     this(initialCapacity, 0.75f);
10 }
11
12 // 指定“容量大小”和“加载因子”的构造函数
13 public Hashtable(int initialCapacity, float loadFactor) {
14     if (initialCapacity < 0)
15         throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);
16     if (loadFactor <= 0 || Float.isNaN(loadFactor))
17         throw new IllegalArgumentException("Illegal Load: "+loadFactor);
18
19     if (initialCapacity==0)
20         initialCapacity = 1;
21     this.loadFactor = loadFactor;
22     table = new Entry[initialCapacity];
23     threshold = (int)(initialCapacity * loadFactor);
24 }
25
26 // 包含“子Map”的构造函数
27 public Hashtable(Map<? extends K, ? extends V> t) {
28     this(Math.max(2*t.size(), 11), 0.75f);
29     // 将“子Map”的全部元素都添加到Hashtable中
30     putAll(t);
31 }

View Code

第3.3部分 Hashtable的主要对外接口

  3.3.1 clear()

  clear() 的作用是清空Hashtable。它是将Hashtable的table数组的值全部设为null

1 public synchronized void clear() {
2     Entry tab[] = table;
3     modCount++;
4     for (int index = tab.length; --index >= 0; )
5         tab[index] = null;
6     count = 0;
7 }

View Code

  3.3.2 contains() 和 containsValue()

  contains() 和 containsValue() 的作用都是判断Hashtable是否包含"值(value)"

 1 public boolean containsValue(Object value) {
 2     return contains(value);
 3 }
 4
 5 public synchronized boolean contains(Object value) {
 6     // Hashtable中“键值对”的value不能是null,
 7     // 若是null的话,抛出异常!
 8     if (value == null) {
 9         throw new NullPointerException();
10     }
11
12     // 从后向前遍历table数组中的元素(Entry)
13     // 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
14     Entry tab[] = table;
15     for (int i = tab.length ; i-- > 0 ;) {
16         for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
17             if (e.value.equals(value)) {
18                 return true;
19             }
20         }
21     }
22     return false;
23 }

View Code

  3.3.3 containsKey()

  containsKey() 的作用是判断Hashtable是否包含key

 1 public synchronized boolean containsKey(Object key) {
 2     Entry tab[] = table;
 3     int hash = key.hashCode();
 4     // 计算索引值,
 5     // % tab.length 的目的是防止数据越界
 6     int index = (hash & 0x7FFFFFFF) % tab.length;
 7     // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
 8     for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 9         if ((e.hash == hash) && e.key.equals(key)) {
10             return true;
11         }
12     }
13     return false;
14 }

View Code

  3.3.4 elements()

  elements() 的作用是返回“所有value”的枚举对象

 1 public synchronized Enumeration<V> elements() {
 2     return this.<V>getEnumeration(VALUES);
 3 }
 4
 5 // 获取Hashtable的枚举类对象
 6 private <T> Enumeration<T> getEnumeration(int type) {
 7     if (count == 0) {
 8         return (Enumeration<T>)emptyEnumerator;
 9     } else {
10         return new Enumerator<T>(type, false);
11     }
12 }

View Code

  从中,我们可以看出:
  (01) 若Hashtable的实际大小为0,则返回“空枚举类”对象emptyEnumerator;
  (02) 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)

  我们先看看emptyEnumerator对象是如何实现的

 1 private static Enumeration emptyEnumerator = new EmptyEnumerator();
 2 //空枚举类
 3 //当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
 4 private static class EmptyEnumerator implements Enumeration<Object> {
 5     EmptyEnumerator() {
 6     }
 7     // 空枚举类的hasMoreElements() 始终返回false
 8     public boolean hasMoreElements() {
 9         return false;
10     }
11     // 空枚举类的nextElement() 抛出异常
12     public Object nextElement() {
13         throw new NoSuchElementException("Hashtable Enumerator");
14     }
15 }

View Code

  我们在来看看Enumeration类Enumerator的作用是提供了“通过elements()遍历Hashtable的接口”和“通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。

 1 private class Enumerator<T> implements Enumeration<T>,Iterator<T>{
 2     // 指向Hashtable的table
 3     Entry[] table = Hashtable.this.table;
 4     //Hashtable的总的大小
 5     int index = table.length;
 6     Entry<K,V> entry = null;
 7     Entry<K,V> lastReturned = null;
 8     int type;
 9     //Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
10     //iterator为true,表示它是迭代器;否则,是枚举类。
11     boolean iterator;
12     // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
13     protected int expectedModCount = modCount;
14     Enumerator(int type, boolean iterator) {
15         this.type = type;
16         this.iterator = iterator;
17     }
18     //从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
19     public boolean hasMoreElements() {
20         Entry<K,V> e = entry;
21         int i = index;
22         Entry[] t = table;
23         /* Use locals for faster loop iteration */
24         while (e == null && i > 0) {
25             e = t[--i];
26         }
27         entry = e;
28         index = i;
29         return e != null;
30     }
31
32     //获取下一个元素
33     //注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
34     //首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
35     //然后,依次向后遍历单向链表Entry。
36     public T nextElement() {
37         Entry<K,V> et = entry;
38         int i = index;
39         Entry[] t = table;
40         /* Use locals for faster loop iteration */
41         while (et == null && i > 0) {
42             et = t[--i];
43         }
44         entry = et;
45         index = i;
46         if (et != null) {
47             Entry<K,V> e = lastReturned = entry;
48             entry = e.next;
49             return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
50         }
51         throw new NoSuchElementException("Hashtable Enumerator");
52     }
53
54     //迭代器Iterator的判断是否存在下一个元素
55     //实际上,它是调用的hasMoreElements()
56     public boolean hasNext() {
57         return hasMoreElements();
58     }
59
60     //迭代器获取下一个元素
61     //实际上,它是调用的nextElement()
62     public T next() {
63         if (modCount != expectedModCount)
64             throw new ConcurrentModificationException();
65         return nextElement();
66     }
67
68     //迭代器的remove()接口。
69     //首先,它在table数组中找出要删除元素所在的Entry,
70     //然后,删除单向链表Entry中的元素。
71     public void remove() {
72         if (!iterator)
73             throw new UnsupportedOperationException();
74         if (lastReturned == null)
75             throw new IllegalStateException("Hashtable Enumerator");
76         if (modCount != expectedModCount)
77             throw new ConcurrentModificationException();
78         synchronized(Hashtable.this) {
79             Entry[] tab = Hashtable.this.table;
80             int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
81
82             for (Entry<K,V> e = tab[index], prev = null; e != null;
83                  prev = e, e = e.next) {
84                 if (e == lastReturned) {
85                     modCount++;
86                     expectedModCount++;
87                     if (prev == null)
88                         tab[index] = e.next;
89                     else
90                         prev.next = e.next;
91                     count--;
92                     lastReturned = null;
93                     return;
94                 }
95             }
96             throw new ConcurrentModificationException();
97         }
98     }
99 }

View Code

  entrySet(), keySet(), keys(), values()的实现方法和elements()差不多,而且源码中已经明确的给出了注释。这里就不再做过多说明了。

  3.3.5 get()

  get() 的作用就是获取key对应的value,没有的话返回null

 1 public synchronized V get(Object key) {2     Entry tab[] = table;3     int hash = key.hashCode();4     // 计算索引值,5     int index = (hash & 0x7FFFFFFF) % tab.length;6     // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素7     for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {8         if ((e.hash == hash) && e.key.equals(key)) {9             return e.value;
10         }
11     }
12     return null;
13 }

View Code

  3.3.6 put()

  put() 的作用是对外提供接口,让Hashtable对象可以通过put()将“key-value”添加到Hashtable中。

 1 public synchronized V put(K key, V value) {2     // Hashtable中不能插入value为null的元素!!!3     if (value == null) {4         throw new NullPointerException();5     }7     // 若“Hashtable中已存在键为key的键值对”,8     // 则用“新的value”替换“旧的value”9     Entry tab[] = table;
10     int hash = key.hashCode();
11     int index = (hash & 0x7FFFFFFF) % tab.length;
12     for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
13         if ((e.hash == hash) && e.key.equals(key)) {
14             V old = e.value;
15             e.value = value;
16             return old;
17             }
18     }
20     // 若“Hashtable中不存在键为key的键值对”,
21     // (01) 将“修改统计数”+1
22     modCount++;
23     // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
24     //  则调整Hashtable的大小
25     if (count >= threshold) {
26         // Rehash the table if the threshold is exceeded
27         rehash();
28
29         tab = table;
30         index = (hash & 0x7FFFFFFF) % tab.length;
31     }
32
33     // (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
34     Entry<K,V> e = tab[index];
35     //(04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位、置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
36     tab[index] = new Entry<K,V>(hash, key, value, e);
37     // (05) 将“Hashtable的实际容量”+1
38     count++;
39     return null;
40 }

View Code

  3.3.7 putAll()

  putAll() 的作用是将“Map(t)”的中全部元素逐一添加到Hashtable中

1 public synchronized void putAll(Map<? extends K, ? extends V> t) {
2     for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
3         put(e.getKey(), e.getValue());
4 }

View Code

  3.3.8 remove()

  remove() 的作用就是删除Hashtable中键为key的元素

 1 public synchronized V remove(Object key) {
 2     Entry tab[] = table;
 3     int hash = key.hashCode();
 4     int index = (hash & 0x7FFFFFFF) % tab.length;
 5     // 找到“key对应的Entry(链表)”
 6     // 然后在链表中找出要删除的节点,并删除该节点。
 7     for (Entry<K,V> e = tab[index],prev=null ; e!=null;prev=e,e= e.next) {
 8         if ((e.hash == hash) && e.key.equals(key)) {
 9             modCount++;
10             if (prev != null) {
11                 prev.next = e.next;
12             } else {
13                 tab[index] = e.next;
14             }
15             count--;
16             V oldValue = e.value;
17             e.value = null;
18             return oldValue;
19         }
20     }
21     return null;
22 }

View Code

第3.4部分 Hashtable实现的Cloneable接口

  Hashtable实现了Cloneable接口,即实现了clone()方法。
  clone()方法的作用很简单,就是克隆一个Hashtable对象并返回。

 1 // 克隆一个Hashtable,并以Object的形式返回。
 2 public synchronized Object clone() {
 3     try {
 4         Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
 5         t.table = new Entry[table.length];
 6         for (int i = table.length ; i-- > 0 ; ) {
 7             t.table[i] = (table[i] != null)
 8             ? (Entry<K,V>) table[i].clone() : null;
 9         }
10         t.keySet = null;
11         t.entrySet = null;
12         t.values = null;
13         t.modCount = 0;
14         return t;
15     } catch (CloneNotSupportedException e) {
16         // this shouldn't happen, since we are Cloneable
17         throw new InternalError();
18     }
19 }

View Code

第3.5部分 Hashtable实现的Serializable接口

  Hashtable实现java.io.Serializable,分别实现了串行读取、写入功能。串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中.串行读取函数:根据写入方式读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出

private synchronized void writeObject(java.io.ObjectOutputStream s)throws IOException
{// Write out the length, threshold, loadfactors.defaultWriteObject();// Write out length, count of elements and then the key/value objectss.writeInt(table.length);s.writeInt(count);for (int index = table.length-1; index >= 0; index--) {Entry entry = table[index];while (entry != null) {s.writeObject(entry.key);s.writeObject(entry.value);entry = entry.next;}}
}private void readObject(java.io.ObjectInputStream s)throws IOException, ClassNotFoundException
{// Read in the length, threshold, and loadfactors.defaultReadObject();// Read the original length of the array and number of elementsint origlength = s.readInt();int elements = s.readInt();// Compute new size with a bit of room 5% to grow but// no larger than the original size.  Make the length// odd if it's large enough, this helps distribute the entries.// Guard against the length ending up zero, that's not valid.int length = (int)(elements * loadFactor) + (elements / 20) + 3;if (length > elements && (length & 1) == 0)length--;if (origlength > 0 && length > origlength)length = origlength;Entry[] table = new Entry[length];count = 0;// Read the number of elements and then all the key/value objectsfor (; elements > 0; elements--) {K key = (K)s.readObject();V value = (V)s.readObject();// synch could be eliminated for performancereconstitutionPut(table, key, value);}this.table = table;
}

View Code

第4部分 Hashtable遍历方式

  4.1 遍历Hashtable的键值对

  第一步:根据entrySet()获取Hashtable的“键值对”的Set集合。
  第二步:通过Iterator迭代器遍历“第一步”得到的集合。

 1 // 假设table是Hashtable对象
 2 // table中的key是String类型,value是Integer类型
 3 Integer integ = null;
 4 Iterator iter = table.entrySet().iterator();
 5 while(iter.hasNext()) {
 6     Map.Entry entry = (Map.Entry)iter.next();
 7     // 获取key
 8     key = (String)entry.getKey();
 9         // 获取value
10     integ = (Integer)entry.getValue();
11 }

View Code

4.2 通过Iterator遍历Hashtable的键

  第一步:根据keySet()获取Hashtable的“键”的Set集合。
  第二步:通过Iterator迭代器遍历“第一步”得到的集合。

 1 //假设table是Hashtable对象
 2 //table中的key是String类型,value是Integer类型
 3 String key = null;
 4 Integer integ = null;
 5 Iterator iter = table.keySet().iterator();
 6 while (iter.hasNext()) {
 7         // 获取key
 8     key = (String)iter.next();
 9         // 根据key,获取value
10     integ = (Integer)table.get(key);
11 }

View Code

4.3 通过Iterator遍历Hashtable的值

  第一步:根据value()获取Hashtable的“值”的集合。
  第二步:通过Iterator迭代器遍历“第一步”得到的集合。

1 // 假设table是Hashtable对象
2 // table中的key是String类型,value是Integer类型
3 Integer value = null;
4 Collection c = table.values();
5 Iterator iter= c.iterator();
6 while (iter.hasNext()) {
7     value = (Integer)iter.next();
8 }

View Code

4.4 通过Enumeration遍历Hashtable的键

  第一步:根据keys()获取Hashtable的集合。
  第二步:通过Enumeration遍历“第一步”得到的集合。

1 Enumeration enu = table.keys();
2 while(enu.hasMoreElements()) {
3     System.out.println(enu.nextElement());
4 } 

View Code

4.5 通过Enumeration遍历Hashtable的值

  第一步:根据elements()获取Hashtable的集合。
  第二步:通过Enumeration遍历“第一步”得到的集合。

1 Enumeration enu = table.keys();
2 while(enu.hasMoreElements()) {
3     System.out.println(enu.nextElement());
4 }   

View Code

深入Java集合学习系列:Hashtable的实现原理相关推荐

  1. 【Java集合学习系列】HashMap实现原理及源码分析

    HashMap特性 hashMap是基于哈希表的Map接口的非同步实现,继承自AbstractMap接口,实现了Map接口(HashTable跟HashMap很像,HashTable中的方法是线程安全 ...

  2. 深入Java集合学习系列:ArrayList的实现原理

    参考文献 深入Java集合学习系列:ArrayList的实现原理 本文转自xwdreamer博客园博客,原文链接:http://www.cnblogs.com/xwdreamer/archive/20 ...

  3. 深入Java集合学习系列:LinkedHashSet的实现原理

    转载自  深入Java集合学习系列:LinkedHashSet的实现原理 1.    LinkedHashSet概述: LinkedHashSet是具有可预知迭代顺序的Set接口的哈希表和链接列表实现 ...

  4. java hashset 实现原理_深入Java集合学习系列:HashSet的实现原理

    Updated on 九月 8, 2016 深入Java集合学习系列:HashSet的实现原理 1.HashSet概述: HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持. ...

  5. 深入Java集合学习系列:HashSet的实现原理

    引用自 http://www.cnblogs.com/xwdreamer/archive/2012/06/03/2532999.html, 作者:xwdreamer 深入Java集合学习系列:Hash ...

  6. 深入Java集合学习系列:HashMap的实现原理

    2019独角兽企业重金招聘Python工程师标准>>> HashMap概述: HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和 ...

  7. 深入Java集合学习系列:ConcurrentHashMap之实现细节

    http://www.iteye.com/topic/344876 ConcurrentHashMap是Java 5中支持高并发.高吞吐量的线程安全HashMap实现.在这之前我对Concurrent ...

  8. 深入Java集合学习系列:TreeMap实现

    http://blog.csdn.net/tobeandnottobe/article/details/7232664 TreeMap使用红黑二叉树实现. 红黑二叉树: a.        根节点是黑 ...

  9. Java命令学习系列(二)——Jstack

    转载自 Java命令学习系列(二)--Jstack jstack是java虚拟机自带的一种堆栈跟踪工具. 功能 jstack用于生成java虚拟机当前时刻的线程快照.线程快照是当前java虚拟机内每一 ...

最新文章

  1. 加速JDBC的快捷方法
  2. IP Sec ***
  3. eclipse中在类saolei.Test 中找不到main方法
  4. Memcache持久性分布式数据MemcacheDB
  5. 优达学城深度学习之五——卷积神经网络
  6. Android UI自定义Spinner下拉框(用popuwindow实现)-转
  7. Java Web(十) JDBC的增删改查,C3P0等连接池,dbutils框架的使用
  8. 图论及其应用(吴望明中文版)
  9. VirtualBox NAT网络实现 PXE 启动
  10. 悉尼大学 GC in Data Science 学习总结
  11. Mac、移动硬盘中拷贝后文件夹和文件都为灰色解决办法
  12. 乱世王者服务器维护,乱世王者微信541区风平浪静开服时间表_乱世王者新区开服预告_第一手游网手游开服表...
  13. 怎么在运行上面看域名服务器,域名dns服务器查询方法是什么?如何查看dns服务器地址...
  14. 光标快速移动到文档尾部_在Word文档中,把光标移动到文件尾部的快捷键是__________。...
  15. jquery停止全部音频播放
  16. Leslie--Chueng项目服务端、小程序的本地部署操作教程
  17. 哪里查看计算机最近打开的文档,W7电脑系统中如何查看最近打开过的文档项目...
  18. word2010 论文引用/文献插入 保姆级图解
  19. asp.net C# 题目大全
  20. Nginx做流媒体服务Windows版实现直播

热门文章

  1. 开课吧:人工智能技术会如何影响青年就业
  2. 小白必学教程Python编码
  3. 蚂蚁、字节、拼多多,你的简历能通过几家?
  4. 数独动态解题演示小网站 - 基于Vue/pixi.js/Flask
  5. 通过Jinq简化数据库查询
  6. 日志服务(原SLS)新功能发布(5)--使用Logstash接入数据
  7. 设置组策略的应用条件-----Windows 管理规范 (WMI)过虑器
  8. 2010年IT领域的十大收购
  9. Latex中插入超链接/网址
  10. 机器学习回顾篇(2):最小二乘法