正则化(Regularization)

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-normℓ2-norm,中文称作L1正则化L2正则化,或者L1范数L2范数

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项。

下图是Python中Ridge回归的损失函数,式中加号后面一项α||w||22即为L2正则化项。

一般回归分析中回归w表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为||w||1
  • L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2

一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。

那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

L1正则化和特征选择

假设有如下带L1正则化的损失函数:

J=J0+α∑w|w|(1)

其中 J0是原始的损失函数,加号后面的一项是L1正则化项, α是正则化系数。注意到L1正则化是权值的 绝对值之和, J是带有绝对值符号的函数,因此 J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数 J0后添加L1正则化项时,相当于对 J0做了一个约束。令 L=α∑w|w|,则 J=J0+L,此时我们的任务变成 在L约束下求出J0取最小值的解。考虑二维的情况,即只有两个权值 w1和 w2,此时 L=|w1|+|w2|对于梯度下降法,求解 J0的过程可以画出等值线,同时L1正则化的函数 L也可以在 w1w2的二维平面上画出来。如下图:


图1 L1正则化

图中等值线是J0的等值线,黑色方形是L函数的图形。在图中,当J0等值线与L图形首次相交的地方就是最优解。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α,可以控制L图形的大小。α越小,L的图形越大(上图中的黑色方框);α越大,L的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)中的w可以取到很小的值。

类似,假设有如下带L2正则化的损失函数:

J=J0+α∑ww2(2)

同样可以画出他们在二维平面上的图形,如下:


图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0与L相交时使得w1或w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ,hθ(x)是我们的假设函数,那么线性回归的代价函数如下:

J(θ)=12m∑i=1m(hθ(x(i))−y(i))(3)

那么在梯度下降法中,最终用于迭代计算参数 θ的迭代式为:

θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))x(i)j(4)

其中 α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))x(i)j(5)

其中 λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代, θj都要先乘以一个小于1的因子,从而使得 θj不断减小,因此总得来看, θ是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

正则化参数的选择

L1正则化参数

通常越大的λ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:

F(x)=f(x)+λ||x||1

其中 x是要估计的参数,相当于上文中提到的 w以及 θ. 注意到L1正则化在某些位置是不可导的,当 λ足够大时可以使得 F(x)在 x=0时取到最小值。如下图:


图3 L1正则化参数的选择

分别取λ=0.5和λ=2,可以看到越大的λ越容易使F(x)在x=0时取到最小值。

L2正则化参数

从公式5可以看到,λ越大,θj衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。

Reference

过拟合的解释:
https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss2.html

正则化的解释:
https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss1.html

正则化的解释:
http://blog.csdn.net/u012162613/article/details/44261657

正则化的数学解释(一些图来源于这里):
http://blog.csdn.net/zouxy09/article/details/24971995

损失函数中正则化项L1和L2的理解相关推荐

  1. 机器学习中正则化项L1和L2的直观理解

    文章目录 正则化(Regularization) 稀疏模型与特征选择的关系 L1和L2正则化的直观理解 正则化和特征选择的关系 为什么梯度下降的等值线与正则化函数第一次交点是最优解? L2正则化和过拟 ...

  2. 机器学习中正则化项L1和L2

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数.  图像卷 ...

  3. [机器学习]正则化项L1和L2的学习与理解

    正则化项L1和L2的学习与理解 一,正则化(Regularization) 稀疏模型与特征选择的关系 二, 为什么L1产生稀疏模型而L2可以防止过拟合 1, L1和L2正则化的直观理解 正则化和特征选 ...

  4. 【应用】【正则化】L1、L2正则化

    L1正则化的作用:特征选择从可用的特征子集中选择有意义的特征,化简机器学习问题.著名的LASSO(Least Absolute Shrinkage and Selection Operator)模型将 ...

  5. L1和L2简单易懂的理解

    一.正则化(Regularization) ~~~~~~~~机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L ...

  6. 在tensorflow框架下添加正则化约束l1、l2的方法

    一.基础正则化函数 tf.contrib.layers.l1_regularizer(scale, scope=None) 返回一个用来执行L1正则化的函数,函数的签名是func(weights).  ...

  7. tikhonov正则化 matlab_4 L1和l2正则化详解(花书7.1 参数范数惩罚)

    7.1 参数范数惩罚 许多正则化方法通过对目标函数 添加一个 参数范数惩罚 ,限制模型(如神经网络.线性回归和逻辑回归)的学习能力.将正则化后的目标函数记为: 其中 是权衡范数惩罚项 和标准目标函数 ...

  8. python计算两张图像的L1和L2损失

    理解 损失函数中正则化项L1和L2的理解: https://blog.csdn.net/fjssharpsword/article/details/78842374 过拟合的解释:  https:// ...

  9. L1和L2:损失函数和正则化

    作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f ...

最新文章

  1. 网站发布外链如何防止后期被删除?
  2. Java---线程多(工作内存)和内存模型(主内存)分析
  3. C#与halcon联合开发——内存溢出
  4. 前端学习(2864):简单秒杀系统学习之优化js
  5. 量子计算机的体积有多大,量子计算机也能实现摩尔定律
  6. 大学计算机课第二章内容总结,第四周市政系《大学计算机基础》课程总结
  7. 【clickhouse】clickhouse的系统表
  8. cmd输入pip报错_Houdini安装外部python库(pip)
  9. [Web开发] Web程序调式的利器 - Fiddler (HTTP协议监视工具)
  10. 用pathon实现计算器功能
  11. 上海通用北盛汽车2012届校园招聘长春理工大学专业面试安排 共 27 人
  12. 当幸福来敲门,不是影评
  13. 人工智能 —— 知识图谱
  14. 算法之BTree(Java版)
  15. Excel设置下拉选项的方法
  16. Android 常用技术
  17. 黑苹果MacOSX 10.9.3 Mavericks(13D65) 安装教程
  18. java 线程亲缘性_线程的调度、优先级和亲缘性
  19. Android 通过okhttp + jsoup 爬虫爬取网页小说
  20. 分享一套宾馆客房管理系统源码,功能完善,代码完整

热门文章

  1. Apache Flink 简介和编程模型
  2. android 除了webview 浏览器控件,AgentWeb是基于Android WebView一个功能完善小型浏览器库...
  3. linux做成service服务器,Zabbix2.0.3做成Service
  4. python判断sqlite连接状态_python3 自动识别usb连接状态,即对usb重连的判断方法
  5. python2必须安装步骤_Python入门-第三方库的安装及环境配置(2)
  6. Windows 7 shortcut icons missing (快捷方式图标丢失)
  7. C#设计模式之:抽象工厂模式与反射
  8. 基于Dockerfile 构建redis5.0.0(包括持久化)及RedisDestopManager 监控
  9. manven需要注意点几点
  10. Luogu P3251 [JLOI2012]时间流逝 期望dp