共享锁(S锁)

又称为读锁,可以查看但无法修改和删除的一种数据锁。如果事务T对数据A加上共享锁后,则其他事务只能对A再加共享锁,不能加排它锁。获准共享锁的事务只能读数据,不能修改数据。 共享锁下其它用户可以并发读取,查询数据。但不能修改,增加,删除数据。资源共享.

排它锁(X锁)

又称为写锁、独占锁,若事务T对数据对象A加上X锁,则只允许T读取和修改A,其他任何事务都不能再对A加任何类型的锁,直到T释放A上的锁。这就保证了其他事务在T释放A上的锁之前不能再读取和修改A

互斥锁

在编程中,引入了对象互斥锁的概念,来保证共享数据操作的完整性。每个对象都对应于一个可称为" 互斥锁" 的标记,这个标记用来保证在任一时刻,只能有一个线程访问该对象。

悲观锁

总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。再比如Java里面的同步原语synchronized关键字的实现也是悲观锁。

乐观锁

顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。

行级锁

行级锁是 MySQL 中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突,其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁和排他锁。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

表级锁

表级锁是 MySQL 中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分 MySQL 引擎支持。最常使用的 MyISAM 与 InnoDB 都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。

页级锁

页级锁是 MySQL 中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。因此,采取了折衷的页级锁,一次锁定相邻的一组记录。BDB 支持页级锁。开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

丢失修改

指事务1和事务2同时读入相同的数据并进行修改,事务2提交的结果破坏了事务1提交的结果,导致事务1进行的修改丢失。

事务

不可重复读

一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!

读脏数据

事务T1修改某一数据,并将其写回磁盘,事务T2读取同一数据后,T1由于某种原因被撤消,这时T1已修改过的数据恢复原值,T2读到的数据就与数据库中的数据不一致,则T2读到的数据就为"脏"数据,即不正确的数据。

死锁

两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程

死锁四个产生条件

1)互斥条件

指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。

2)请求和保持条件

指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。

3)不剥夺条件

指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。

4)环路等待条件

指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合{P0,P1,P2,···,Pn}中的P0正在等待一个P1占用的资源;P1正在等待P2占用的资源,……,Pn正在等待已被P0占用的资源。

预防死锁打破上述之一的条件。

CAS

CAS(Compare and Swap 比较并交换)是乐观锁的一种实现方式

锁存在的问题

Java在JDK1.5之前都是靠 synchronized关键字保证同步的,这种通过使用一致的锁定协议来协调对共享状态的访问,可以确保无论哪个线程持有共享变量的锁,都采用独占的方式来访问这些变量。这就是一种独占锁,独占锁其实就是一种悲观锁,所以可以说 synchronized 是悲观锁。

悲观锁机制存在以下问题

  1. 在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题。

  2. 一个线程持有锁会导致其它所有需要此锁的线程挂起。

  3. 如果一个优先级高的线程等待一个优先级低的线程释放锁会导致优先级倒置,引起性能风险。

对比于悲观锁的这些问题,另一个更加有效的锁就是乐观锁。其实乐观锁就是:每次不加锁而是假设没有并发冲突而去完成某项操作,如果因为并发冲突失败就重试,直到成功为止。

乐观锁

其实就是一种思想。相对悲观锁而言,乐观锁假设认为数据一般情况下不会产生并发冲突,所以在数据进行提交更新的时候,才会正式对数据是否产生并发冲突进行检测,如果发现并发冲突了,则返回用户错误的信息,让用户决定如何去做。上面提到的乐观锁的概念中其实已经阐述了它的具体实现细节:主要就是两个步骤:**冲突检测和数据更新。**其实现方式有一种比较典型的就是 Compare and Swap ( CAS )。

CAS介绍

CAS是乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。

CAS 操作中包含三个操作数 —— 需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置V的值与预期原值A相匹配,那么处理器会自动将该位置值更新为新值B。否则处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。(在 CAS 的一些特殊情况下将仅返回 CAS 是否成功,而不提取当前值。)

CAS 有效地说明了“ 我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。 ”这其实和乐观锁的冲突检查+数据更新的原理是一样的。

这里再强调一下,乐观锁是一种思想。CAS是这种思想的一种实现方式。

JAVA对CAS的支持

在JDK1.5 中新增 java.util.concurrent (J.U.C)就是建立在CAS之上的。相对于 synchronized 这种阻塞算法,CAS是非阻塞算法的一种常见实现。所以J.U.C在性能上有了很大的提升。

以 java.util.concurrent 中的 AtomicInteger 为例,看一下在不使用锁的情况下是如何保证线程安全的。主要理解 getAndIncrement 方法,该方法的作用相当于 ++i 操作。

 1 public class AtomicInteger extends Number implements java.io.Serializable {  2     private volatile int value; 3 4     public final int get() {  5         return value;  6     }  7 8     public final int getAndIncrement() {  9         for (;;) {
10             int current = get();
11             int next = current + 1;
12             if (compareAndSet(current, next))
13                 return current;
14         }
15     }
16
17     public final boolean compareAndSet(int expect, int update) {
18         return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
19     }
20 }

在没有锁的机制下,字段value要借助volatile原语,保证线程间的数据是可见性。这样在获取变量的值的时候才能直接读取。然后来看看 ++i 是怎么做到的。

getAndIncrement 采用了CAS操作,每次从内存中读取数据然后将此数据和 +1 后的结果进行CAS操作,如果成功就返回结果,否则重试直到成功为止。

而 compareAndSet 利用JNI(Java Native Interface)来完成CPU指令的操作:

1 public final boolean compareAndSet(int expect, int update) {
2     return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
3 } 

其中unsafe.compareAndSwapInt(this, valueOffset, expect, update);类似如下逻辑:

1 if (this == expect) {2     this = update
3     return true;
4 } else {5     return false;
6 }

那么比较this == expect,替换this = update,compareAndSwapInt实现这两个步骤的原子性呢?

CAS原理

CAS通过调用JNI的代码实现的。而compareAndSwapInt就是借助C来调用CPU底层指令实现的。

下面从分析比较常用的CPU(intel x86)来解释CAS的实现原理。

下面是sun.misc.Unsafe类的compareAndSwapInt()方法的源代码:

1 public final native boolean compareAndSwapInt(Object o,long offset,int expected,int x);

可以看到这是个本地方法调用。这个本地方法在JDK中依次调用的C++代码为:

 1 #define LOCK_IF_MP(mp) __asm cmp mp, 0  \2                        __asm je L0      \3                        __asm _emit 0xF0 \4                        __asm L0:5 6 inline jint Atomic::cmpxchg(jint exchange_value, volatile jint*  dest, jint        compare_value) {7   // alternative for InterlockedCompareExchange8   int mp = os::is_MP();9   __asm {
10     mov edx, dest
11     mov ecx, exchange_value
12     mov eax, compare_value
13     LOCK_IF_MP(mp)
14     cmpxchg dword ptr [edx], ecx
15   }
16 }

如上面源代码所示,程序会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。如果程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(lock cmpxchg)。反之,如果程序是在单处理器上运行,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)。

CAS缺点

ABA问题

CAS看起来很爽,但是会导致“ABA问题”。

CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。

比如说一个线程one从内存位置V中取出A,这时候另一个线程two也从内存中取出A,并且two进行了一些操作变成了B,然后two又将V位置的数据变成A,这时候线程one进行CAS操作发现内存中仍然是A,然后one操作成功。尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。如果链表的头在变化了两次后恢复了原值,但是不代表链表就没有变化。因此前面提到的原子操作AtomicStampedReference/AtomicMarkableReference就很有用了。这允许一对变化的元素进行原子操作。

在运用CAS做Lock-Free操作中有一个经典的ABA问题:

线程1准备用CAS将变量的值由A替换为B,在此之前,线程2将变量的值由A替换为C,又由C替换为A,然后线程1执行CAS时发现变量的值仍然为A,所以CAS成功。但实际上这时的现场已经和最初不同了,尽管CAS成功,但可能存在潜藏的问题,例如下面的例子:

现有一个用单向链表实现的堆栈,栈顶为A,这时线程T1已经知道A.next为B,然后希望用CAS将栈顶替换为B:

head.compareAndSet(A,B);

在T1执行上面这条指令之前,线程T2介入,将A、B出栈,再pushD、C、A,此时堆栈结构如下图,而对象B此时处于游离状态:

此时轮到线程T1执行CAS操作,检测发现栈顶仍为A,所以CAS成功,栈顶变为B,但实际上B.next为null,所以此时的情况变为:

其中堆栈中只有B一个元素,C和D组成的链表不再存在于堆栈中,平白无故就把C、D丢掉了。

以上就是由于ABA问题带来的隐患,各种乐观锁的实现中通常都会用版本戳version来对记录或对象标记,避免并发操作带来的问题,在Java中,AtomicStampedReference也实现了这个作用,它通过包装[E,Integer]的元组来对对象标记版本戳stamp,从而避免ABA问题,例如下面的代码分别用AtomicInteger和AtomicStampedReference来对初始值为100的原子整型变量进行更新,AtomicInteger会成功执行CAS操作,而加上版本戳的AtomicStampedReference对于ABA问题会执行CAS失败:

import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference;public class ABA {private static AtomicInteger atomicInt = new AtomicInteger(100);private static AtomicStampedReference<Integer> atomicStampedRef = new AtomicStampedReference<Integer>(100, 0);public static void main(String[] args) throws InterruptedException {Thread intT1 = new Thread(new Runnable() {@Overridepublic void run() {atomicInt.compareAndSet(100, 101);atomicInt.compareAndSet(101, 100);}});Thread intT2 = new Thread(new Runnable() {@Overridepublic void run() {try {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}boolean c3 = atomicInt.compareAndSet(100, 101);System.out.println(c3);        //true}});intT1.start();intT2.start();intT1.join();intT2.join();Thread refT1 = new Thread(new Runnable() {@Overridepublic void run() {try {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}atomicStampedRef.compareAndSet(100, 101, atomicStampedRef.getStamp(), atomicStampedRef.getStamp()+1);atomicStampedRef.compareAndSet(101, 100, atomicStampedRef.getStamp(), atomicStampedRef.getStamp()+1);}});Thread refT2 = new Thread(new Runnable() {@Overridepublic void run() {int stamp = atomicStampedRef.getStamp();System.out.println("before sleep : stamp = " + stamp);    // stamp = 0try {TimeUnit.SECONDS.sleep(2);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("after sleep : stamp = " + atomicStampedRef.getStamp());//stamp = 1boolean c3 = atomicStampedRef.compareAndSet(100, 101, stamp, stamp+1);System.out.println(c3);        //false}});refT1.start();refT2.start();}}

循环时间长开销大

自旋CAS(不成功,就一直循环执行,直到成功)如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。

只能保证一个共享变量的原子操作

当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作。

CAS与Synchronized的使用情景

1、对于资源竞争较少(线程冲突较轻)的情况,使用synchronized同步锁进行线程阻塞和唤醒切换以及用户态内核态间的切换操作额外浪费消耗cpu资源;而CAS基于硬件实现,不需要进入内核,不需要切换线程,操作自旋几率较少,因此可以获得更高的性能。

2、对于资源竞争严重(线程冲突严重)的情况,CAS自旋的概率会比较大,从而浪费更多的CPU资源,效率低于synchronized。

补充: synchronized在jdk1.6之后,已经改进优化。synchronized的底层实现主要依靠Lock-Free的队列,基本思路是自旋后阻塞,竞争切换后继续竞争锁,稍微牺牲了公平性,但获得了高吞吐量。在线程冲突较少的情况下,可以获得和CAS类似的性能;而线程冲突严重的情况下,性能远高于CAS。

concurrent包的实现

由于java的CAS同时具有 volatile 读和volatile写的内存语义,因此Java线程之间的通信现在有了下面四种方式:

1. A线程写volatile变量,随后B线程读这个volatile变量。2. A线程写volatile变量,随后B线程用CAS更新这个volatile变量。3. A线程用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量。4. A线程用CAS更新一个volatile变量,随后B线程读这个volatile变量。    

Java的CAS会使用现代处理器上提供的高效机器级别原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器中实现同步的关键(从本质上来说,能够支持原子性读-改-写指令的计算机器,是顺序计算图灵机的异步等价机器,因此任何现代的多处理器都会去支持某种能对内存执行原子性读-改-写操作的原子指令)。同时,volatile变量的读/写和CAS可以实现线程之间的通信。把这些特性整合在一起,就形成了整个concurrent包得以实现的基石。如果我们仔细分析concurrent包的源代码实现,会发现一个通用化的实现模式:

1. 首先,声明共享变量为volatile;  2. 然后,使用CAS的原子条件更新来实现线程之间的同步;3. 同时,配合以volatile的读/写和CAS所具有的volatile读和写的内存语义来实现线程之间的通信。

AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中的基础类都是使用这种模式来实现的,而concurrent包中的高层类又是依赖于这些基础类来实现的。从整体来看,concurrent包的实现示意图如下:

JVM中的CAS(堆中对象的分配)

Java调用new object()会创建一个对象,这个对象会被分配到JVM的堆中。那么这个对象到底是怎么在堆中保存的呢?

首先,new object()执行的时候,这个对象需要多大的空间,其实是已经确定的,因为java中的各种数据类型,占用多大的空间都是固定的(对其原理不清楚的请自行Google)。那么接下来的工作就是在堆中找出那么一块空间用于存放这个对象。
在单线程的情况下,一般有两种分配策略:

  1. 指针碰撞:这种一般适用于内存是绝对规整的(内存是否规整取决于内存回收策略),分配空间的工作只是将指针像空闲内存一侧移动对象大小的距离即可。

  2. 空闲列表:这种适用于内存非规整的情况,这种情况下JVM会维护一个内存列表,记录哪些内存区域是空闲的,大小是多少。给对象分配空间的时候去空闲列表里查询到合适的区域然后进行分配即可。

但是JVM不可能一直在单线程状态下运行,那样效率太差了。由于再给一个对象分配内存的时候不是原子性的操作,至少需要以下几步:查找空闲列表、分配内存、修改空闲列表等等,这是不安全的。解决并发时的安全问题也有两种策略:

  1. CAS:实际上虚拟机采用CAS配合上失败重试的方式保证更新操作的原子性,原理和上面讲的一样。

  2. TLAB:如果使用CAS其实对性能还是会有影响的,所以JVM又提出了一种更高级的优化策略:每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲区(TLAB),线程内部需要分配内存时直接在TLAB上分配就行,避免了线程冲突。只有当缓冲区的内存用光需要重新分配内存的时候才会进行CAS操作分配更大的内存空间。
    虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来进行配置(jdk5及以后的版本默认是启用TLAB的)。

详解各种锁:CAS、共享锁、排它锁、互斥锁、悲观锁、乐观锁、行级锁、表级锁、页级锁、死锁、JAVA对CAS的支持、ABA问题、AQS原理相关推荐

  1. java锁(公平锁和非公平锁、可重入锁(又名递归锁)、自旋锁、独占锁(写)/共享锁(读)/互斥锁、读写锁)

    前言 本文对Java的一些锁的概念和实现做个整理,涉及:公平锁和非公平锁.可重入锁(又名递归锁).自旋锁.独占锁(写)/共享锁(读)/互斥锁.读写锁 公平锁和非公平锁 概念 公平锁是指多个线程按照申请 ...

  2. 通用线程:POSIX 线程详解,第 2部分——称作互斥对象的小玩意

    通用线程:POSIX 线程详解,第 2部分--称作互斥对象的小玩意 Daniel Robbins (drobbins@gentoo.org), 总裁/CEO, Gentoo Technologies, ...

  3. ansible自动化运维详解(一)ansible的安装部署、参数使用、清单管理、配置文件参数及用户级ansible操作环境构建

    文章目录 ansible自动化运维详解(一)ansible的安装部署.参数使用.清单管理.配置文件参数及用户级ansible操作环境构建 一.ansible的安装部署 1.1.ansible简介 1. ...

  4. 『Linux』第九讲:Linux多线程详解(三)_ 线程互斥 | 线程同步

    「前言」文章是关于Linux多线程方面的知识,上一篇是 Linux多线程详解(二),今天这篇是 Linux多线程详解(三),内容大致是线程互斥与线程同步,讲解下面开始! 「归属专栏」Linux系统编程 ...

  5. MySQL 锁全集(共享锁/排它锁、记录锁/间隙锁/临键锁)

    提升工作效率利器: ‎Mac App Store 上的"Whale - 任务管理.时间.卡片.高效率" 简介:锁是计算机协调多个进程或线程并发访问某一资源变得有序的机制. 一.锁分 ...

  6. 独占锁(写锁)/共享锁(读锁)/互斥锁

    理论 独占锁:指该锁一次只能被一个线程所持有.对于ReentrantLock和Synchronized而言都是独占锁. 共享锁:该锁可以被多个线程所持有.对于ReentrantReadWriteLoc ...

  7. JAVAWEB开发之SpringMVC详解(二)——高级开发、数据回显、参数绑定集合、图片上传、json交互、validation校验、异常处理、RESTful支持、拦截器

    知识回顾 springmvc框架 用户请求url到DispatcherServlet前端控制器,相当于中央调度器,降低系统各组件之间的耦合度. DispatcherServlet前端控制器通过Hand ...

  8. Python(IT峰)笔记07-数据类型详解-元祖的定义与操作,元祖推导式,元祖生成器,yield关键字,字典及定义,字典所支持的操作,zip研所函数,dict转型,字典函数,集合,冰冻集合,集合推导

    1.元祖的定义 一组有序数据的组合,元祖一旦定义不可修改,是不可变数据类型 定义空元祖 变量=() 变量=tuple() 变量=(内容1,内容2,内容3,--)直接赋值 特列:变量=内容1,内容2,内 ...

  9. TCP/IP详解 第七章 防火墙和网络地址转换(3) iptables防火墙的mangle表

    mangle表的主要功能是根据规则修改数据包的一些标志位,以便其他规则或程序可以利用这种标志对数据包进行过滤或策略路由. 内网的客户机通过Linux主机连入Internet,而Linux主机与Inte ...

  10. 开发人员为什么必须要了解数据库锁详解

    这篇文章主要给大家介绍了关于开发人员为什么必须要了解数据库锁的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用数据库具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧 1.锁? 1. ...

最新文章

  1. 超详细配置教程,搭建 Windows 深度学习环境
  2. php如何实现用户报警,php封装实现钉钉机器人报警接口的示例代码
  3. 【Groovy】集合遍历 ( 调用集合的 any 函数判定集合中是否有指定匹配规则的元素 | 代码示例 )
  4. OpenCV FLANN在数据集中搜索查询图片的实例(附完整代码)
  5. 全球10亿美元以上富翁人数排名,杭州超越东京,大家怎么看
  6. 远程管理服务器的具体操作方法
  7. (1)变量、常量、程序交互、数据类型、bool、基本运算符
  8. 安装ISE.14.7后仿真时遇到的问题与解决
  9. List常用方法总结
  10. origin 绘制箱图
  11. 电视助手 Android,无屏助手TV版|无屏助手电视版 V4.0.3 安卓版 下载_当下软件园_软件下载...
  12. 手机12306买卧铺下铺技巧_12306如何选择上下铺 选择上下铺小技巧
  13. 超详细的Python实现新浪微博模拟登陆(小白都能懂)
  14. 转移Package Cache文件夹,转移Windows Installer文件夹
  15. 台式计算机打印机共享,只需两步台式和笔记本电脑可共享打印机
  16. 上门洗车小程序/APP功能介绍
  17. 简述存储器的分级策略
  18. 电子版微积分,知识共享,数学真知传四方
  19. hbase创建solr索引的超时问题
  20. 为什么一群人之中,蚊子就“盯”着你?为你揭秘“蚊子”的真相!

热门文章

  1. ​【Python】Python中的经典时间序列预测模型总结
  2. 吴恩达深度学习课程的漫画版来了!(漫画、视频、笔记都可以下载了!)
  3. 【数据竞赛】这篇文章送给想要学习特征交叉的朋友。
  4. Bengio团队因果学习论文反思:为何机器学习仍在因果关系中挣扎?
  5. 【Python】用 Highcharts 绘制饼图,也很强大
  6. 学习TensorFlow、PyTorch、机器学习、深度学习和数据结构五件套!附下载链接!...
  7. TIANCHI天池-OGeek算法挑战赛-完整方案及代码(亚军)
  8. 网易云信合作伙伴招募计划全面开启!
  9. 从电商用户触点看服务设计趋势
  10. Python实现命令行监控北京实时公交之一