目录

  • Abstract
  • Introduction
  • Related Work
  • Model
    • A. Background: GAIL and PPO
      • 1. 行为克隆(Behavior Cloning)
      • 2. GAIL方法
    • B. Reinforcement and Imitation Learning Model
      • 1.Hybrid IL/RL Reward
      • 2.Leveraging Physical States in Simulation
        • (1) Demonstration as a curriculum.
        • (2) Learning value functions from states
        • (3) Object-centric discriminator
        • (4) State prediction auxiliary tasks
      • 3.Sim2Real Policy Transfer
  • Experiments
    • A. Environment Setups
    • B. Robot Arm Manipulation Tasks
    • C. Quantitative Evaluation
    • D.Sim2Real Policy Transfer Results
  • Discussion
  • Conclusion

Abstract

We propose a model-free deep reinforcement learning method that leverages a small amount of demonstration data to assist a reinforcement learning agent.
作者在文中提出一个基于自由的深度强化学习方法,这个方法以一个较少量的数据来帮助一个强化学习智能体(训练)。

We apply this approach to robotic manipulation tasks and train end-to-end visuomotor policies that map directly from RGB camera inputs to joint velocities.
作者将这个方法应用在机器人抓取,和训练端到端的移动视觉策略,这个端到端主要指从RGB相机输入直接映射到关节移动。

We demonstrate that our approach can solve a wide variety of visuomotor tasks, for which engineering a scripted controller would be laborious.
作者验证了这种方法能解决广泛数量的移动视觉任务,这种任务对于设计一个脚本控制器来说很困难。

In experiments, our reinforcement and imitation agent achieves significantly better performances than agents trained with reinforcement learning or imitation learning alone.
在实验中,“强化学习+启发式学习”组合的性能表现优于单独强化学习和单独启发式学习的性能表现。

We also illustrate that these policies, trained with large visual and dynamics variations, can achieve preliminary successes in zero-shot sim2real transfer.
我们说明这些方法在大量视觉和动态变化中达到了基本的效果。

Introduction

For robotics, RL in combination with powerful function approximators such as neural networks provides a general framework for designing sophisticated controllers that would be hard to handcraft otherwise.
强化学习结合强有力的函数近似,比如神经网络,可以提供一个通用的计算框架来设计手工难以设计的控制器。

Nevertheless, end-to-end learning of visuomotor controllers for long-horizon and multi-stage manipulation tasks using model-free RL techniques remains a challenging problem.
使用无模型的强化学习技术来处理移动视觉控制器的端到端学习,并将其用用在长期、多阶段的操作任务上,仍然是个难题。

Policies for robotics must transform multi-modal and partial observations from noisy sensors, such as cameras, into coordinated activity of many degrees of freedom.
机器人策略必须将来自具有噪声的传感器的多模态和部分观测到的信息转换成多自由度的协调运动。

At the same time, realistic tasks often come with contactrich dynamics and vary along multiple dimensions (visual appearance, position, shapes, etc.), posing significant generalization challenges.
同时,在现实任务中通常还伴随着充分接触和多维度的信息,包括视觉外表、位置和形状等,带来了重大的泛化性能挑战。

Model-based methods can have difficulties handling such complex dynamics and large variations. Directly training model-free methods on real robotics hardware can be daunting due to the high sample complexity.
强化学习的两个分类:基于模型和基于自由
基于模型在解决这种问题上可能比较难
基于自由出于高样本复杂度的原因就会显得比较棘手

The difficulty of real-world RL training is compounded by safety considerations as well as the difficulty of accessing information about the state of the environment (e.g. the position of an object) to define a reward function.
真实世界的强化学习训练包括:
1、安全考虑
2、获得环境的状态信息(比如:一个物体的各种姿势信息)来定义一个奖励函数的困难

Finally, even in simulation when perfect state information and large amounts of training data are available, exploration can be a significant challenge, especially for on-policy methods.
强化学习里面的探索利用也很困难
尤其是对同策略的方法

This is partly due to the often high-dimensional and continuous action space, but also due to the difficulty of designing suitable reward functions.
难以训练的原因:
高维度且连续的动作空间;
设计合适的奖励函数;

In this paper, we present a model-free deep RL method that can solve a variety of robotic manipulation tasks directly from pixel input. Our key insights are 1) to reduce the difficulty of exploration in continuous domains by leveraging a handful of human demonstrations; 2) to leverage several new techniques that exploit privileged and task-specific information during training only which can accelerate and stabilize the learning of visuomotor policies in multi-stage tasks; and 3) to improve generalization by increasing the diversity of the training conditions. As a result, the policies work well under significant variations of system dynamics, object appearances, task lengths, etc.
1、基于自由的强化学习模型;
2、解决一些从像素点输入的机器人操作任务;
3、通过人的演示来降低来连续领域的探索困难程度;
4、用了一些具有基本的和任务特点的信息的新技术来训练,这样可以加速和稳定多阶段任务中的移动视觉策略;
5、增加多样的训练条件来增强泛化性能;
6、在动态系统的重大变化、对象外观任务长度等表现得较好。

The set of tasks includes multi-stage and long-horizon tasks, and they require full 9-DoF joint velocity control directly from pixels.
任务集合包括多阶段和长期的任务。
他们都需要全9自由度的来自像素信息的关节速度控制

Our approach utilizes demonstration data in two ways: first, it uses a hybrid reward that combines the task reward with an imitation reward based on Generative Adversarial Imitation Learning [15]. This aids with exploration
while still allowing the final controller to outperform the human demonstrator on the task. Second, it uses demonstration trajectories to construct a curriculum of states along which to initialize the episodes during training. This enables the agent to learn about later stages of the task earlier in training, facilitating the solving of long tasks.
在两个方面使用演示数据:
1、这个模型使用了混合的奖励。一个是强化学习的奖励,一个是生成对抗模仿学习的奖励。这样有助于让控制器既能探索,又能做的比人演示的好。

[15] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In NIPS, pages 4565–4573, 2016.

2、另外一个是使用演示的轨迹来构建一个课程,在课程中进行每个回合的初始化过程。论文认为,这样的课程有助于让智能体提前学习后续的内容,强化解决任务的能力。

Through the use of a physics engine and high-throughput RL algorithms, we can simulate parallel copies of a robot arm to perform millions of complex physical interactions in a contact-rich environment while eliminating the practical concerns of robot safety and system reset.
通过使用一个物理引擎和高性能的强化学习算法
可以并行地训练许多次机械臂
避免机器人安全问题和系统重置带来的问题

Furthermore, we can, during training, exploit privileged and task-specific information about the true system state with several new techniques, including learning policy and value in separate modalities, an object-centric GAIL discriminator, and auxiliary tasks for visual modules.
新技术包括:
1、用不同的方式学习策略和价值
2、一个以对象为中心GAIL鉴别器
3、为视觉模型设计辅助任务

We use the same model and the same algorithm with only small task-specific modifications of the training setup to learn visuomotor controllers for six diverse robot arm manipulation tasks.
我们使用相同的模型和相同的算法,只对训练设置进行了小的特定任务的修改,以学习六种不同的机器人手臂操作任务的视觉运动控制器。

Related Work

Three classes of RL algorithms are currently dominant for continuous control problems: guided policy search methods (GPS; Levine and Koltun [22]), value-based methods such as the deterministic policy gradient (DPG;
Silver et al. [45], Lillicrap et al. [26], Heess et al. [12]) or the normalized advantage function (NAF; Gu et al. [10]) algorithm, and trust-region based policy gradient algorithms such as trust region policy optimization (TRPO [42]) and proximal policy optimization (PPO [43]).
在连续环境主流的三种强化学习算法类:
1、guided policy search methods——“引导性策略搜索模型”

[22] Sergey Levine and Vladlen Koltun. Guided policy search.
In ICML, pages 1–9, 2013.

2、基于价值的方法
the deterministic policy gradient——确定性策略梯度

[45] David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In ICML, 2014.

[26] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement learning. ICLR, 2016.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning continuous
control policies by stochastic value gradients. In NIPS,
pages 2926–2934, 2015.

3、基于置信区的策略梯度算法
the normalized advantage function algorithm——标准优势函数算法;

[10] Shixiang Gu, Tim Lillicrap, Ilya Sutskever, and Sergey
Levine. Continuous deep Q-learning with model-based
acceleration. In ICML, 2016.

trust region policy optimization——置信区策略最优;

[42] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimization. In ICML, pages 1889–1897, 2015.

proximal policy optimization——近似策略最优;

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

TRPO [42] and PPO [43] hold appeal due to their robustness to hyperparameter settings as well as their scalability [14] but the lack of sample efficiency makes them unsuitable for training directly on robotics hardware.
TRPO和PPO具有较高的吸引力是因为他们的超参数的设定具有鲁棒性以及他们具有可测量性;但是采样有效性比较少(【思考】可能是数据不能充分训练?)使得他们不能直接训练硬件机器人。

The idea of using large-scale data collection for training visuomotor controllers has been the focus of Levine et al. [24] and Pinto and Gupta [33] who train a convolutional network to predict grasp success for diverse sets of objects using a large dataset with 10s or 100s of thousands of grasp attempts collected from multiple robots in a self-supervised setting.
用大规模数据收集来训练移动视觉控制器的想法:
训练一个CNN,用来预测抓取的成功;
采用的是多个机器人在自监督设置下生成的10秒或者100秒的大量抓取试图数据集;

Demonstrations can be used to initialize policies, design cost functions, guide exploration, augment the training data, or a combination of these.
演示数据可以被用来初始化策略、设计损失函数、引导探索和增加训练数据,甚至是这些的结合体

Our method learns end-to-end visuomotor policies without reliance on demonstrator actions.
我们的方法是学习端到端的移动视觉策略,这个移动视觉策略不需要依赖演示者的行为动作。因此不同演示者操作也可以。

Model

The policy takes both an RGB camera observation and a proprioceptive
feature vector that describes the joint positions and angular velocities.
一个RGB相机的观测
一个机器人关节信息的向量
采用这样的原因在与实体机器人也这样做,因此不需要进行额外的信息转变


图像经过CNN处理,主观触觉经过MLP处理
提取之后的信息连接好后,传入LSTM模型

A. Background: GAIL and PPO

启发式学习(Imitation Learning):

1. 行为克隆(Behavior Cloning)

假设:人类的演示是一种动作状态对的数据集。
D={si,ai},i=1,2,3⋯ND=\lbrace s_{i},a_{i} \rbrace,i=1,2,3 \cdots N D={si​,ai​},i=1,2,3⋯N
行为克隆算法是将人类演示的数据集做监督学习问题。
这个算法使用最大似然估计来训练一个参数化的策略π\piπ。
πθ:S→A\pi_{\theta}:S \rightarrow Aπθ​:S→A
那么这样的话,最优参数表示如下:
θ∗=argmaxθ∑Nlogθπ(ai∣si)\theta^{*}=argmax_{\theta} \sum_{N}log_{\theta} \pi(a_{i}|s_{i})θ∗=argmaxθ​N∑​logθ​π(ai​∣si​)
行为克隆在数据集充分的情况下好用
但是,机器人数据集的收集耗时耗力,因此需要较少量的数据集实现学习

2. GAIL方法

既使用了演示的数据
有允许智能体学习从环境中交互的经验
GAIL使用两个网络:
一个是策略网络:πθ:S→A\pi_{\theta}:S \rightarrow Aπθ​:S→A
一个是鉴别网络:Dψ:S×A→[0,1]D_{\psi}:S\times A \rightarrow [0,1]Dψ​:S×A→[0,1]
使用最大值-最小值目标函数:
max⁡θmin⁡ψEπE[logDψ(s,a)]+Eπθ[log(1−Dψ(s,a))]\operatorname{max}_\theta \operatorname{min}_\psi E_{\pi_{E}}[logD_{\psi}(s,a)] + E_{\pi_{\theta}}[log(1-D_{\psi}(s,a))]maxθ​minψ​EπE​​[logDψ​(s,a)]+Eπθ​​[log(1−Dψ​(s,a))]
πE\pi_{E}πE​指的是演示轨迹生成的专家的策略;
目标函数的目标是尽可能让智能体的策略尽可能与专家的策略一致
训练πθ\pi_{\theta}πθ​的方法:用策略梯度的方法最大化一个奖励函数
rgail=−log(1−Dψ(st,at))r_{gail}=-log(1-D_{\psi}(s_{t},a_{t}))rgail​=−log(1−Dψ​(st​,at​)),使用限幅函数限制在最大值是10
GAIL通常是和TRPO结合起来使用
3. TRPO和PPO
PPO only relies on first-order gradients and can be easily implemented with recurrent networks in a distributed setting [14].
PPO只需要一阶梯度,可以很简单的在循环神经网络中进行运用

PPO implements an approximate trust region that limits the change in the policy per iteration.
PPO采用近似置信区来限制每次迭代的策略的改变

This is achieved via a regularization term based on the Kullback-Leibler (KL) divergence, the strength of which is adjusted dynamically depending on actual change in the policy in past iterations.
这个通过一个基于KL散度的正则化项,这个正则化项依靠在过去策略的迭代中实际的改变来动态的调整

B. Reinforcement and Imitation Learning Model

1.Hybrid IL/RL Reward

Hence, we design the task rewards as sparse piecewise constant
functions based on the different stages of the respective tasks.
根据任务的不同阶段,设置分段的常值奖励函数
奖励值的变换,只在任务从一个状态像另一个状态的改变

we provide additional guidance via a hybrid reward function that combines the imitation reward rgailr_{gail}rgail​ with the task reward rtaskr_{task}rtask​.
在任务中增加了混合的奖励函数
结合了启发奖励和任务的奖励
r(st,at)=λrgail(st,at)+(1−λ)rtask(st,at),λ∈[0,1]r(s_{t},a_{t})=\lambda r_{gail}(s_{t},a_{t})+(1-\lambda)r_{task}(s_{t},a_{t}),\lambda \in [0,1]r(st​,at​)=λrgail​(st​,at​)+(1−λ)rtask​(st​,at​),λ∈[0,1]
where the imitation reward encourages the policy to generate trajectories closer to demonstration trajectories, and the task reward encourages the policy to achieve high returns on the task.
启发式奖励——鼓励生成的策略轨迹更接近于人的演示轨迹
任务式奖励——鼓励策略获得更多的回报

设置奖励函数的结果——获得的成绩比单强化学习/单启发式学习都要好

2.Leveraging Physical States in Simulation

The physics simulator we employ for training exposes the full state of the system.
用系统的全状态进行物理仿真

(1) Demonstration as a curriculum.

Previous work indicates that shaping the distribution of start states towards states where the optimal policy tends to visit can greatly improve policy learning [18, 35].
先前的工作指出:对开始状态到最优策略即将达到的状态之间进行塑造可以很大程度提升策略学习
从演示实验中获得开始状态的分布
对于不同的任务,分成不同个curriculums
初始状态选择策略:
ϵ\epsilonϵ:在环境中随机选取状态
1−ϵ1-\epsilon1−ϵ:在环境中选取演示起点的状态

(2) Learning value functions from states

During training, each PPO worker executes the policy for K steps and uses the discounted sum of rewards and the value as an advantage function estimator At∧=∑i=1Kγi−1rt+i+γK−1Vϕ(st+K)−Vϕ(st)\stackrel{\wedge}{A_{t}} = \sum_{i=1}^{K} \gamma^{i-1}r_{t+i} + \gamma^{K-1} V_{\phi}(s_{t+K}) -V_{\phi}(s_{t})At​∧​=i=1∑K​γi−1rt+i​+γK−1Vϕ​(st+K​)−Vϕ​(st​) where γ\gammaγ is the discount factor.
PPO算法选取后面的K步求取优势函数的估计值

we take advantage of the low-level physical states (e.g., the position and velocity of the 3D objects and the robot arm) to train the value Vφ with a smaller multilayer perceptron.
我们使用一些低等级的物理状态,比如说3D物理或者机械臂的位置姿态和速度信息,来训练价值VϕV_{\phi}Vϕ​网络。使用多层感知机训练。

策略和价值使用不同的学习策略,有利于减小机器人的震动

(3) Object-centric discriminator

our discriminator only takes the object-centric features as input while masking out arm-related information.
我们的鉴别器只将以对象为中心的特征作为输入,同时屏蔽了与手臂相关的信息。

The construction of the object-centric representation requires a certain amount of domain knowledge of the tasks.
这种以物体为中心的呈现需要一些任务领域知识

(4) State prediction auxiliary tasks

To facilitate learning visuomotor policies we add a state prediction layer on the top of the CNN module to predict the locations of objects from the camera observation. We use a fully-connected layer to regress the 3D coordinates of objects in the task, minimizing the L2L_{2}L2​ loss between the predicted and ground-truth object locations.
为了便于学习视觉运动策略,我们在CNN模块的顶部添加了一个状态预测层,从摄像机观察中预测物体的位置。我们使用一个全连接层来回归任务中对象的三维坐标,最小化预测对象和地面真实对象位置之间的L2L_{2}L2​损失。

3.Sim2Real Policy Transfer

Instead of using professional calibration equipment, our approach to sim2real policy transfer relies on domain randomization of camera position and orientation [17, 47].
我们的sim2real策略转移方法依赖于摄像机位置和方向的区域随机化,而不是使用专业的校准设备。

In contrast to some previous works our trained policies do not rely on any object position information or intermediate goals but rather learn a mapping end-to-end from raw pixel input joint velocities.
与之前的一些工作相比,我们训练的策略不依赖于任何对象位置信息或中间目标,而是从原始像素输入的联合速度中学习端到端映射。

Experiments

A. Environment Setups

Kinova Jaco arm 具有9自由度
6个自由度——手臂关节
3个自由度——角速度

The visuomotor policy controls the robot by setting the joint velocity commands, producing 9-dimensional continuous velocities in the range of [−1, 1] at 20Hz.
一维9元素的向量,20Hz的频率,数值连续型

Visual observations of the table-top scene are provided via a suitably positioned real-time RGB camera. The proprioceptive features and the camera observations are available in both simulation and real environments thus enabling policy transfer.
桌面场景的视觉观察是通过一个适当定位的实时RGB相机提供的。
本体感觉特征和摄像机观察在模拟和真实环境中都可用,
从而实现了策略转移。

We use a large variety of objects, ranging from basic geometric shapes to procedurally generated 3D objects built from ensembles of primitive shapes. We increase the diversity of objects by randomizing various physical properties.
我们使用了各种各样的对象,从基本的几何形状到由原始形状的集合构建的程序生成的3D对象。我们通过随机化各种物理性质来增加物体的多样性。

SpaceNavigator 3D motion controller——收集演示信息

B. Robot Arm Manipulation Tasks


左列展示了机器人进行任务的6个操作;
右列展示了机器人的实际环境下的2个操作。

Task Name Task Purposes
Block Lifting evaluate the model’s robustness
Block stacking evaluated in sim2real transfer experiments
Clearing table with blocks requires lifting two blocks off the tabletop
Clearing table with a box to grasp the toy put it into the box
Pouring liquid pour the “liquid” from one mug to the other container
Order fulfillment recognize the object categories, perform successful grasps on diverse shapes, and handle tasks with variable lengths

C. Quantitative Evaluation

On the contrary, neither reinforcement nor imitation alone can solve all tasks.
强化学习和启发式学习都不能独自地实现任务

These baselines use the same setup as the full model, except that we set λ\lambdaλ = 0 for RL and λ\lambdaλ = 1 for GAIL, while our model uses a balanced contribution of the hybrid reward, where λ\lambdaλ = 0.5.
本文提出的方法相当于两个方法的线性叠加,因此纯粹强化学习就是λ\lambdaλ = 0;纯粹GAIL就是λ\lambdaλ = 1,当两个均等结合就是λ\lambdaλ = 0.5。

We report the mean episode returns as a function of the number of training iterations in Fig. 4.
采用每回合的平均回报作为指标绘图

The only case where the baseline model is on par with the full model is the block lifting task, in which both the RL baseline and the full model achieved similar levels of performance. We hypothesize that this is due to the short length of the lifting task, where random exploration can provide a sufficient learning signal without the aid of demonstrations.
在Block Lifting任务中,结合模型与纯RL模型的性能指标相近。
作者分析:即使没有演示学习,仅仅通过随即探索产生的奖励信号就能满足机器人的学习

First, the RL agent learns faster than the full model in the clearing blocks task, but thefull model eventually outperforms. This is because the full model discovers a novel strategy, different from the strategy employed by human operators (see video). In this case, imitation gave contradictory signals but eventually, reinforcement learning guided the policy towards a better strategy.
首先,强化学习智能体学得比综合模型智能体快,但是综合模型智能体最终完成了任务
综合模型智能体发现了新策略,与人演示的策略不同
虽然模仿学习给予了不好的策略,但是智能体最终在强化学习的引导下完成了策略衍生

Second, pouring liquid is the only task where GAIL outperforms its RL counterpart. Imitation can effectively shape the agent’s behaviors towards the demonstration trajectories [51]. This is a viable solution for the pouring task, where a controller that generates similar-looking behaviors can complete the task.
其次,倾倒液体是唯一的一个GAIL优于RL的任务。
模仿学习可以有效地塑造智能体向演示特征轨迹的行为

D.Sim2Real Policy Transfer Results

Although the sim and real domains are similar, there is still a sizable reality gap that makes zero-shot transfer challenging.
For example, while the simulated blocks are rigid the objects employed in the real-world setup are non-rigid foam blocks which deform and bounce unpredictably.
Furthermore, neural network policies are sensitive to subtle discrepancies between simulated rendering and the real camera frame.
虽然模拟环境和真实环境是相似的,但仍然存在相当大的现实差距,使zero-shot transfer具有挑战性。
例如,虽然模拟块是刚性的对象,在现实世界中,采用的是非刚性泡沫砌块,其具有不可预测地变形和反弹。
此外,神经网络策略对模拟渲染和真实的相机帧两者之间的细微差异很敏感。

Discussion

Conclusion

【论文笔记】Reinforcement and Imitation Learning for Diverse Visuomotor Skills相关推荐

  1. 论文笔记 | 谷歌 Soft Prompt Learning ,Prefix-Tuning的 -> soft promt -> p tuning v2

    论文笔记 | 谷歌 Soft Prompt Learning ptuning -> Prefix-Tuning -> soft promt -> p tuning v2 " ...

  2. 【论文笔记】 LSTM-BASED DEEP LEARNING MODELS FOR NONFACTOID ANSWER SELECTION

    一.简介 这篇论文由IBM Watson发表在2016 ICLR,目前引用量92.这篇论文的研究主题是answer selection,作者在这篇论文基础上[Applying Deep Learnin ...

  3. 论文笔记:CLIP:Learning Transferable Visual Models From Natural Language Supervision详解

    paper:https://arxiv.org/abs/2103.00020 代码:GitHub - openai/CLIP: Contrastive Language-Image Pretraini ...

  4. 论文笔记:Attention U-Net: Learning Where to Look for the Pancreas

    Abstract 我们提出了一种用于医学成像的新型注意门(AG)模型,该模型自动学习聚焦于不同形状和大小的目标结构.用AG训练的模型隐 含地学习抑制输入图像中的不相关区域,同时突出显示对特定任务有用的 ...

  5. 2021-06-03 【论文笔记】Cross-domain Correspondence Learning for Exemplar-based Image Translation

    论文题目:Cross-domain Correspondence Learning for Exemplar-based Image Translation 论文主页:https://panzhang ...

  6. 【论文笔记】SpotTune: Transfer Learning through Adaptive Fine-tuning

    [CVPR2019]SpotTune: Transfer Learning through Adaptive Fine-tuning 论文链接:SpotTune: Transfer Learning ...

  7. 【论文笔记】Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and

    声明 不定期更新自己精度论文,通俗易懂,初级小白也可以理解 涉及范围:深度学习方向,包括 CV.NLP.Data Fusion.Digital Twin 论文标题:Multi-task deep le ...

  8. 论文笔记:Deep Residual Learning

    之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域, ...

  9. 论文笔记+模型实现TransNets: Learning to Transform for Recommendation

    文章目录 摘要 1. 介绍 2. 提出的方法 2.1 CNN处理文本 & 2.2 DeepCoNN模型 2.3 DeepCoNN的一下局限性 2.4 TransNets模型 2.5 Trans ...

最新文章

  1. LINUX下安装ORACLE,完全搞定
  2. 【面试】编译器为我们实现了几个类成员函数?(c++)
  3. 125. Valid Palindrome
  4. oracle中主键自增长,oracle 数据库主键自动增长方法
  5. Python开发【第五篇】:Python基础之杂货铺
  6. 数字电路与系统(第三版)答案 戚金清 王兢
  7. java ssh框架是什么_JAVA SSH框架介绍
  8. java对网络图片进行签名
  9. 常微分方程求解器ODE solver
  10. 寒武纪加速平台(MLU200系列) 摸鱼指南(一)--- 基本概念及相关介绍
  11. Flink on yarn集群HA配置
  12. PoW 、PoS , DPoS 算法
  13. 封装基于zlib的minizip库用于解压缩zip文件
  14. 项目记录: HEVC单帧码流硬解渲染
  15. Pywinauto Guideline
  16. Layui表格获取行数据
  17. 【网络流量识别】【深度学习】【四】DNN、GBT和RF—利用大数据和深度学习技术进行入侵检测
  18. Spring Boot Maven聚合工程 打包部署教程
  19. oem718d 基准站设置_Novatel诺瓦泰 OEM718D单机测向板卡
  20. 计算机网络技术专业适合女生学吗,什么样的女生适合读计算机网络技术专业

热门文章

  1. Windows操作系统内存管理
  2. 推荐14款最受欢迎的3d建模软件
  3. 华为鸿蒙5s手机价格,华为荣耀5s手机报价及参数配置介绍【图文】
  4. The font Noto Sans CJK SC DemiLight cannot be found
  5. pythonword字体_Python复制Word内容并使用格式设字体与大小实例代码
  6. unity spine 进阶使用
  7. Android MVP框架MVPro的使用和源码分析
  8. Java程序设计概述
  9. 北京突然宣布,元宇宙重大消息
  10. 基于51单片机3轴加速度计ADXL345计步器卡路里系统设计