点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

作者:Naruto_Q

来源:CSDN

先说一下单/双目的测距原理区别:

单目测距原理

先通过图像匹配进行目标识别(各种车型、行人、物体等),再通过目标在图像中的大小去估算目标距离。这就要求在估算距离之前首先对目标进行准确识别,是汽车还是行人,是货车、SUV还是小轿车。准确识别是准确估算距离的第一步。要做到这一点,就需要建立并不断维护一个庞大的样本特征数据库,保证这个数据库包含待识别目标的全部特征数据。比如在一些特殊地区,为了专门检测大型动物,必须先行建立大型动物的数据库;而对于另外某些区域存在一些非常规车型,也要先将这些车型的特征数据加入到数据库中。如果缺乏待识别目标的特征数据,就会导致系统无法对这些车型、物体、障碍物进行识别,从而也就无法准确估算这些目标的距离。

单/双目方案的优点与难点

从上面的介绍,单目系统的优势在于成本较低,对计算资源的要求不高,系统结构相对简单;缺点是:

(1)需要不断更新和维护一个庞大的样本数据库,才能保证系统达到较高的识别率;

(2)无法对非标准障碍物进行判断;

(3)距离并非真正意义上的测量,准确度较低。

双目检测原理

通过对两幅图像视差的计算,直接对前方景物(图像所拍摄到的范围)进行距离测量,而无需判断前方出现的是什么类型的障碍物。所以对于任何类型的障碍物,都能根据距离信息的变化,进行必要的预警或制动。双目摄像头的原理与人眼相似。人眼能够感知物体的远近,是由于两只眼睛对同一个物体呈现的图像存在差异,也称“视差”。物体距离越远,视差越小;反之,视差越大。视差的大小对应着物体与眼睛之间距离的远近,这也是3D电影能够使人有立体层次感知的原因。

上图中的人和椰子树,人在前,椰子树在后,最下方是双目相机中的成像。其中,右侧相机成像中人在树的左侧,左侧相机成像中人在树的右侧,这是因为双目的角度不一样。再通过对比两幅图像就可以知道人眼观察树的时候视差小,而观察人时视差大。因为树的距离远,人的距离近。这就是双目三角测距的原理。双目系统对目标物体距离感知是一种绝对的测量,而非估算。

理想双目相机成像模型

根据三角形相似定律:

根据上述推导,要求得空间点P离相机的距离(深度)z,必须知道:

1、相机焦距f,左右相机基线b(可以通过先验信息或者相机标定得到)。

2、视差 :,即左相机像素点(xl, yl)和右相机中对应点(xr, yr)的关系,这是双目视觉的核心问题。

重点来看一下视差(disparity),视差是同一个空间点在两个相机成像中对应的x坐标的差值,它可以通过编码成灰度图来反映出距离的远近,离镜头越近的灰度越亮;

极线约束

对于左图中的一个像素点,如何确定该点在右图中的位置?需要在整个图像中地毯式搜索吗?当然不用,此时需要用到极线约束。

如上图所示。O1,O2是两个相机,P是空间中的一个点,P和两个相机中心点O1、O2形成了三维空间中的一个平面PO1O2,称为极平面(Epipolar plane)。极平面和两幅图像相交于两条直线,这两条直线称为极线(Epipolar line)。

P在相机O1中的成像点是P1,在相机O2中的成像点是P2,但是P的位置是未知的。我们的目标是:对于左图的P1点,寻找它在右图中的对应点P2,这样就能确定P点的空间位置。

极线约束(Epipolar Constraint)是指当空间点在两幅图像上分别成像时,已知左图投影点p1,那么对应右图投影点p2一定在相对于p1的极线上,这样可以极大的缩小匹配范围。即P2一定在对应极线上,所以只需要沿着极线搜索便可以找到P1的对应点P2。

非理性情况

上面是两相机共面且光轴平行,参数相同的理想情况,当相机O1,O2不是在同一直线上怎么办呢?事实上,这种情况非常常见,因为有些场景下两个相机需要独立固定,很难保证光心完全水平,即使固定在同一个基板上也会由于装配的原因导致光心不完全水平,如下图所示:两个相机的极线不平行,并且不共面。

这种情况下拍摄的两张左右图片,如下图所示。左图中三个十字标志的点,右图中对应的极线是右图中的三条白色直线,也就是对应的搜索区域。我们看到这三条直线并不是水平的,如果进行逐点搜索效率非常低。

图像矫正技术

图像矫正是通过分别对两张图片用单应性矩阵(homography matrix)变换得到,目的是把两个不同方向的图像平面(下图中灰色平面)重新投影到同一个平面且光轴互相平行(下图中黄色平面),这样转化为理想情况的模型。

图像校正示意图

经过图像矫正后,左图中的像素点只需要沿着水平的极线方向搜索对应点就可以了。从下图中我们可以看到三个点对应的视差(红色双箭头线段)是不同的,越远的物体视差越小,越近的物体视差越大。

图像校正后的结果。红色双箭头线段是对应点的视差

上面的主要工作是在极线上寻找匹配点,但是由于要保证两个相机参数完全一致是不现实的,并且外界光照变化和视角不同的影响,使得单个像素点鲁棒性很差。所以匹配工作是一项很重要的事情,这也关系着双目视觉测距的准确性。

双目视觉的工作流程

相机镜头畸变校正原理及方法,之前介绍过,这个基本是通用的,可以用张正友校准法。

双目测距的优点与难点

从上面的介绍看出,双目系统优势:

(1)成本比单目系统要高,但尚处于可接受范围内,并且与激光雷达等方案相比成本较低;

(2)没有识别率的限制,因为从原理上无需先进行识别再进行测算,而是对所有障碍物直接进行测量;

(3)直接利用视差计算距离,精度比单目高;

(4)无需维护样本数据库,因为对于双目没有样本的概念。

双目系统的难点

(1)计算量非常大,对计算单元的性能要求非常高,这使得双目系统的产品化、小型化的难度较大。所以在芯片或FPGA上解决双目的计算问题难度比较大。国际上使用双目的研究机构或厂商,绝大多数是使用服务器进行图像处理与计算,也有部分将算法进行简化后,使用FPGA进行处理。

(2)双目的配准效果,直接影响到测距的准确性。

a. 对环境光照非常敏感。双目立体视觉法依赖环境中的自然光线采集图像,而由于光照角度变化、光照强度变化等环境因素的影响,拍摄的两张图片亮度差别会比较大,这会对匹配算法提出很大的挑战。

b. 不适用于单调缺乏纹理的场景。由于双目立体视觉法根据视觉特征进行图像匹配,所以对于缺乏视觉特征的场景(如天空、白墙、沙漠等)会出现匹配困难,导致匹配误差较大甚至匹配失败。

c. 计算复杂度高。该方法需要逐像素匹配;又因为上述多种因素的影响,为保证匹配结果的鲁棒性,需要在算法中增加大量的错误剔除策略,因此对算法要求较高,想要实现可靠商用难度大,计算量较大。

d. 相机基线限制了测量范围。测量范围和基线(两个摄像头间距)关系很大:基线越大,测量范围越远;基线越小,测量范围越近。所以基线在一定程度上限制了该深度相机的测量范围。

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

双目视觉测距原理,数学推导及三维重建资源相关推荐

  1. [图像处理] 直方图均衡化原理 - 数学推导

    直方图均衡化 效果 代码 import cv2 as cv import numpy as np import matplotlib.pyplot as pltsrc = cv.imread(&quo ...

  2. 结构光双目视觉测距原理

    结构光视觉技术是一种主动投影式的三维测量技术,通过使用投影仪和相机组成的系统来对物体进行三维测量 系统结构: 硬件系统: 常见编码方法: 结构光图案编码 常用的是格雷码和传统的二进制码相比,格雷码的编 ...

  3. 【相机标定与三维重建原理及实现】学习笔记1——相机模型数学推导详解

    目录 前言 一.小孔成像模型 二.坐标系的变换 1.世界坐标系到相机坐标系的变换(刚体变换)[xw^→xc^\boldsymbol {\hat{x_{w}}}\rightarrow \boldsymb ...

  4. 《推荐系统笔记(八)》GBDT和XgBoost的原理(内含详细数学推导)

    前言 GBDT和Xgboost都是常用的树模型,也是常见的boosting方法的代表.尤其是Xgboost,更是被誉为kaggle神器. 本篇博客将从加法模型角度,对GBDT和XgBoost的数学原理 ...

  5. SVM(支持向量机)原理及数学推导全过程详解

    由于格式问题,为方便阅读,请点击下方链接访问原文 点击此处访问原文 点击此处访问原文 点击此处访问原文 点击此处访问原文 关于SVM网上已经有很多很多的前辈有过讲解,这两天自己在网上看了看资料,结合前 ...

  6. GAN(对抗生成网络)原理及数学推导

    本文主要涉及GAN网络的直观理解和其背后的数学原理. 参考课程: 计算机视觉与深度学习 北京邮电大学 鲁鹏 概述 在所有生成模型中,GAN属于 "密度函数未知,直接硬train" ...

  7. rsa加密原理数学证明_非对称加密算法——RSA加密原理及数学推导

    说明:原创不易,著作权仅归作者本人所有,转载请注明出处. 建议:建议阅读时间15min+.证明过程可能看着枯燥,需要动手. 一.  RSA是什么? 看到标题的第一瞬间,先想一下,RSA是什么呢?百度百 ...

  8. iToF深度估计原理-带简单数学推导(持续更新)

    文章目录 什么是iToF? 为什么有相位差,就可以测距? 测距原理 正弦调制:4-sampling-bucket 算法(带推导) 脉冲调制 距离--->深度 iToF的标定问题 双频调制是什么? ...

  9. 双目视觉标定原理详解(张氏标定)

    一.图像坐标:我想和世界坐标谈谈(A) 玉米竭力用轻松具体的描述来讲述双目三维重建中的一些数学问题.希望这样的方式让大家以一个轻松的心态阅读玉米的<计算机视觉学习笔记>双目视觉数学架构系列 ...

最新文章

  1. drcom linux怎么运行,drcom for linux
  2. GitHub 新手详细教程转载,亲测可用
  3. 定制AjaxControlToolkit(1):使一个CalendarExtender对应N个TextBox
  4. Stream is the new file
  5. visual studio 设计器不显示_面向国际市场的装置开发运维软件设计与实现
  6. HBase shell执行批量脚本
  7. docker -v 覆盖了容器中的文件_「安定坊」安全卫士-容器漏洞评估
  8. 关于图像三通道和单通道的解释
  9. php判断检测一个数组里有没有重复的值
  10. MyBatis Generator(MBG)设计哲学与致歉
  11. anaconda新建环境_机器学习实战-开发环境安装
  12. 自己制作的ORMap框架终于完成的差不多了。
  13. SDJZ2537LOL如何拯救小学生
  14. 三种方法解决苹果手机签名问题
  15. 古典恺撒移位密码破解
  16. python优点是代码库支持、灵活_Google将限制Python语言的应用 开发社区热议
  17. 网页转PDF文件工具——wkhtmltopdf
  18. 用AI从零开始创建一个宫崎骏的世界
  19. pyqt5 制作壁纸切换工具实例 第一章
  20. php封装新增,php 封装

热门文章

  1. 倒计时1天 | 专属技术人的盛会,为你而来!
  2. 都有Python了,还要什么编译器!
  3. 叫你一声“孙悟空”,敢答应么?
  4. C++转Python这三年,我都经历了什么?
  5. AI聚变:寻找2018最佳人工智能应用案例
  6. 100 行代码透彻解析 RPC 原理
  7. Spring Boot 极简集成 Shiro
  8. Openresty最佳案例 | 第9篇:Openresty实现的网关权限控制
  9. 关于机器学习模型的可解释性算法!
  10. 机器学习数学基础:随机事件与随机变量