该案例展示了如何利用SCOOP库进行分布式加速计算Geatpy进化算法程序,
本案例和soea_demo6类似,同样是用进化算法来优化SVM的参数C和Gamma,
不同的是,本案例选用更庞大的数据集,使得每次训练SVM模型时耗时更高,从而更适合采用分布式加速计算。
该数据集存放在同目录下的Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls中,
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling。
在执行本案例前,需要确保正确安装sklearn以及SCOOP,以保证SVM和SCOOP部分的代码能够正常执行。
SCOOP安装方法:控制台执行命令pip install scoop
分布式加速计算注意事项:
1.当aimFunc()函数十分耗时,比如无法矩阵化计算、或者是计算单个个体的目标函数值就需要很长时间时,适合采用分布式计算,否则贸然采用分布式计算反而会大大降低性能。
2.分布式执行方法:python -m scoop -n 10 main.py 其中10表示把计算任务分发给10个workers。非分布式执行方法:python main.py
# -*- coding: utf-8 -*-
import numpy as np
import xlrd
import geatpy as ea
from sklearn import svm
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score
from scoop import futures"""
该案例展示了如何利用SCOOP库进行分布式加速计算Geatpy进化算法程序,
本案例和soea_demo6类似,同样是用进化算法来优化SVM的参数C和Gamma,
不同的是,本案例选用更庞大的数据集,使得每次训练SVM模型时耗时更高,从而更适合采用分布式加速计算。
该数据集存放在同目录下的Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls中,
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling。
在执行本案例前,需要确保正确安装sklearn以及SCOOP,以保证SVM和SCOOP部分的代码能够正常执行。
SCOOP安装方法:控制台执行命令pip install scoop
分布式加速计算注意事项:
1.当aimFunc()函数十分耗时,比如无法矩阵化计算、或者是计算单个个体的目标函数值就需要很长时间时,适合采用分布式计算,否则贸然采用分布式计算反而会大大降低性能。
2.分布式执行方法:python -m scoop -n 10 main.py 其中10表示把计算任务分发给10个workers。非分布式执行方法:python main.py
"""class MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置)M = 1 # 初始化M(目标维数)maxormins = [-1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = 2 # 初始化Dim(决策变量维数)varTypes = [0, 0] # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [2**(-8), 2**(-8)] # 决策变量下界ub = [2**8, 1] # 决策变量上界lbin = [1] * Dim # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)ubin = [1] * Dim # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)# 目标函数计算中用到的一些数据workbook=xlrd.open_workbook("Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls") # 打开文件,获取excel文件的workbook(工作簿)对象worksheet=workbook.sheet_by_name("Training_Data") # 通过sheet名获得sheet对象self.data = np.vstack([worksheet.col_values(0)[1:],worksheet.col_values(1)[1:],worksheet.col_values(2)[1:],worksheet.col_values(3)[1:],worksheet.col_values(4)[1:]]).T # 获取特征数据self.data = preprocessing.scale(self.data) # 归一化特征数据self.dataTarget = worksheet.col_values(5)[1:] # 获取标签数据def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵args = list(zip(list(range(pop.sizes)), [Vars] * pop.sizes, [self.data] * pop.sizes, [self.dataTarget] * pop.sizes))pop.ObjV = np.array(list(futures.map(subAimFunc, args))) # 调用SCOOP的map函数进行分布式计算,并构造种群所有个体的目标函数值矩阵ObjVdef test(self, C, G): # 代入优化后的C、Gamma对测试集进行检验# 读取测试集数据workbook=xlrd.open_workbook("Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls") # 打开文件,获取excel文件的workbook(工作簿)对象worksheet=workbook.sheet_by_name("Test_Data") # 通过sheet名获得sheet对象data_test = np.vstack([worksheet.col_values(0)[1:],worksheet.col_values(1)[1:],worksheet.col_values(2)[1:],worksheet.col_values(3)[1:],worksheet.col_values(4)[1:]]).T # 获取特征数据data_test = preprocessing.scale(data_test) # 归一化特征数据dataTarget_test = worksheet.col_values(5)[1:] # 获取标签数据svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(self.data, self.dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型dataTarget_predict = svc.predict(data_test) # 采用训练好的分类器对象对测试集数据进行预测print("测试集数据分类正确率 = %s%%"%(len(np.where(dataTarget_predict == dataTarget_test)[0]) / len(dataTarget_test) * 100))def subAimFunc(args): # 单独计算单个个体的目标函数值i = args[0]Vars = args[1]data = args[2]dataTarget = args[3]C = Vars[i, 0]G = Vars[i, 1]svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(data, dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型scores = cross_val_score(svc, data, dataTarget, cv=20) # 计算交叉验证的得分ObjV_i = [scores.mean()] # 把交叉验证的平均得分作为目标函数值return ObjV_i

源代码

用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算相关推荐

  1. 灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子

    灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题. 仅适应于windows系统,质量保证,完美运行. 本人在读博士研究生,已发表多篇sc ...

  2. 经典的同态滤波算法的优化及其应用参数配置。

    同态滤波,网络上有很多文章提到过这个算法,我们摘取百度的一段文字简要的说明了该算法的核心: 同态滤波是一种减少低频增加高频,从而减少光照变化并锐化边缘或细节的图像滤波方法. 关于该算法,网络上已经有很 ...

  3. 一项关于使用非参数检验分析进化算法行为的研究:2005年中欧委员会实参数优化特别会议的案例研究

    一项关于使用非参数检验分析进化算法行为的研究:2005年中欧委员会实参数优化特别会议的案例研究 Abstract 摘要近年来,在进化算法领域,实验分析越来越受到人们的关注.值得注意的是,目前已有大量的 ...

  4. 数据 + 进化算法 = 数据驱动的进化优化?进化算法 PK 数学优化

    数据 + 进化算法 = 数据驱动的进化优化?进化算法 PK 数学优化 https://baijiahao.baidu.com/s?id=1600164518587031730&wfr=spid ...

  5. 差分进化算法_基于差分进化的水泥烧成系统动态优化算法

    基于差分进化的水泥烧成系统动态优化算法 郝晓辰, 冀亚坤, 郑立召, 史鑫, 赵彦涛 燕山大学电气工程学院,河北 秦皇岛 066004 [摘  要]针对水泥烧成过程的资源浪费以及难以建立有效数学机理模 ...

  6. 【BP预测】基于差分进化算法优化BP神经网络实现汇率数据预测matlab代码​

    1 简介 镍镉电池组作为移动电源对于现代军民用品是必不可少的.为了能够有效的提高镍镉电池寿命的预测精准度,在建立BP神经网络的电池寿命预测模型的基础上,运用差分进化算法(DE)优化BP神经网络连接的初 ...

  7. 多任务进化优化算法(二) 多因子进化算法(MFEA)的理论基础、多任务贝叶斯优化以及MFEAII简介

    摘要 ​ 此篇博客主要介绍了MFEA理论推导及其改进算法MFEA-II.在多任务优化的情景下,如果任务之间存在潜在关系,那么高质量的解在这些任务之间的转移可以显著提高算法的性能.然而有的时候缺乏关于任 ...

  8. 智能优化算法之 差分进化算法

    差分进化算法原理 差分进化算法是一种随机的启发式搜索算法,简单易用,有较强的鲁棒性和全局搜索能力. 差分进化算法是一种自组织最小化方法,利用种群中随机选择的不同向量来干扰一个现有向量,种群中的每个向量 ...

  9. 【论文阅读】基于自适应小生境和 k 均值操作的数据聚类差分进化算法

    文章目录 原文题目 摘要 I. 引言 背景知识 Niching(小生境) 适应度共享 参考文献 提出 Niching Method 的动机 Niching Method 需要 Adaptive 的动机 ...

最新文章

  1. 修改Apache的默认站点目录的方法,需要的朋友可以参考下
  2. 转json_Java对象转JSON时如何动态的增删改查属性
  3. 前端学习(2777):组件之间的通讯方式
  4. 盘点世界上的巨无霸发电机
  5. 简约好看的域名售卖页html源码
  6. t–sql pl–sql_T-SQL for DBA –使用T-SQL进行快速数据分析的三种方法
  7. 在 k8S 中搭建 SonarQube 7.4.9 版本(使用 PostgreSQL 数据库)
  8. SpringBoot整合Swagger生成接口文档
  9. java的实例变量_JAVA语言中的实例变量
  10. BZOJ 4807(車-高精度)
  11. django中ModelForm多表单组合的解决方案
  12. 神兽来了服务器维护,2016年3月31日服务器维护公告
  13. MachineLearning in Action (机器学习实战)源码和数据集下载地址
  14. python爬虫+网页点击事件+selenium模拟浏览器,爬取选股宝内容
  15. Django6:应用及分布式路由
  16. 实习笔记——电力通信网
  17. 安卓基础学习 Day22|按钮的禁用与恢复
  18. CyberArticle(eLib电子图书馆)网文快捕
  19. 【英语】克拉申博士的五大假说
  20. Springboot2.x集成ES7.x

热门文章

  1. 2018.11.06-知识回顾
  2. 改动Centosserver主机名称
  3. python os.system重定向stdout到变量 ,同时获取返回值
  4. Lesson2 Hello,GLSL
  5. hdu 1544(求回文子串的个数)
  6. Flex很可能会消失
  7. wxWidgets一些代码片段(不断更新中)
  8. 计算机科学 第四次,计算机科学与技术第4次上机实验(25页)-原创力文档
  9. pytorch 学习中安装的包
  10. Vivado下几条 Verilog 综合规则