关注上方深度学习技术前沿”,选择“星标公众号”

资源干货,第一时间送达!

作者:zzq

https://zhuanlan.zhihu.com/p/68411179

本文已授权,未经允许,不得二次转载

CNN基本部件介绍

1. 局部感受野

在图像中局部像素之间的联系较为紧密,而距离较远的像素联系相对较弱。因此,其实每个神经元没必要对图像全局进行感知,只需要感知局部信息,然后在更高层局部信息综合起来即可得到全局信息。卷积操作即是局部感受野的实现,并且卷积操作因为能够权值共享,所以也减少了参数量。

2. 池化

池化是将输入图像进行缩小,减少像素信息,只保留重要信息,主要是为了减少计算量。主要包括最大池化和均值池化。

3. 激活函数

激活函数的用是用来加入非线性。常见的激活函数有sigmod, tanh, relu,前两者常用在全连接层,relu常见于卷积层

4. 全连接层

全连接层在整个卷积神经网络中起分类器的作用。在全连接层之前需要将之前的输出展平

经典网络结构

1. LeNet5

由两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用maxpooling

2. AlexNet

模型共八层(不算input层),包含五个卷积层、三个全连接层。最后一层使用softmax做分类输出

AlexNet使用了ReLU做激活函数;防止过拟合使用dropout和数据增强;双GPU实现;使用LRN

3. VGG

全部使用3×3卷积核的堆叠,来模拟更大的感受野,并且网络层数更深。VGG有五段卷积,每段卷积后接一层最大池化。卷积核数目逐渐增加。

总结:LRN作用不大;越深的网络效果越好;1×1的卷积也很有效但是没有3×3好

4. GoogLeNet(inception v1)

从VGG中我们了解到,网络层数越深效果越好。但是随着模型越深参数越来越多,这就导致网络比较容易过拟合,需要提供更多的训练数据;另外,复杂的网络意味更多的计算量,更大的模型存储,需要更多的资源,且速度不够快。GoogLeNet就是从减少参数的角度来设计网络结构的。

GoogLeNet通过增加网络宽度的方式来增加网络复杂度,让网络可以自己去应该如何选择卷积核。这种设计减少了参数 ,同时提高了网络对多种尺度的适应性。使用了1×1卷积可以使网络在不增加参数的情况下增加网络复杂度。

Inception-v2

在v1的基础上加入batch normalization技术,在tensorflow中,使用BN在激活函数之前效果更好;将5×5卷积替换成两个连续的3×3卷积,使网络更深,参数更少

Inception-v3

核心思想是将卷积核分解成更小的卷积,如将7×7分解成1×7和7×1两个卷积核,使网络参数减少,深度加深

Inception-v4 

引入了ResNet,使训练加速,性能提升。但是当滤波器的数目过大(>1000)时,训练很不稳定,可以加入activate scaling因子来缓解

5. Xception

在Inception-v3的基础上提出,基本思想是通道分离式卷积,但是又有区别。模型参数稍微减少,但是精度更高。Xception先做1×1卷积再做3×3卷积,即先将通道合并,再进行空间卷积。depthwise正好相反,先进行空间3×3卷积,再进行通道1×1卷积。核心思想是遵循一个假设:卷积的时候要将通道的卷积与空间的卷积进行分离。而MobileNet-v1用的就是depthwise的顺序,并且加了BN和ReLU。Xception的参数量与Inception-v3相差不大,其增加了网络宽度,旨在提升网络准确率,而MobileNet-v1旨在减少网络参数,提高效率。

6. MobileNet系列

V1

使用depthwise separable convolutions;放弃pooling层,而使用stride=2的卷积。标准卷积的卷积核的通道数等于输入特征图的通道数;而depthwise卷积核通道数是1;还有两个参数可以控制,a控制输入输出通道数;p控制图像(特征图)分辨率。

V2

相比v1有三点不同:1.引入了残差结构;2.在dw之前先进行1×1卷积增加feature map通道数,与一般的residual block是不同的;3.pointwise结束之后弃用ReLU,改为linear激活函数,来防止ReLU对特征的破环。这样做是因为dw层提取的特征受限于输入的通道数,若采用传统的residual block,先压缩那dw可提取的特征就更少了,因此一开始不压缩,反而先扩张。但是当采用扩张-卷积-压缩时,在压缩之后会碰到一个问题,ReLU会破环特征,而特征本来就已经被压缩,再经过ReLU还会损失一部分特征,应该采用linear。

V3

互补搜索技术组合:由资源受限的NAS执行模块集搜索,NetAdapt执行局部搜索;网络结构改进:将最后一步的平均池化层前移并移除最后一个卷积层,引入h-swish激活函数,修改了开始的滤波器组。

V3综合了v1的深度可分离卷积,v2的具有线性瓶颈的反残差结构,SE结构的轻量级注意力模型。

7. EffNet

EffNet是对MobileNet-v1的改进,主要思想是:将MobileNet-1的dw层分解层两个3×1和1×3的dw层,这样 第一层之后就采用pooling,从而减少第二层的计算量。EffNet比MobileNet-v1和ShuffleNet-v1模型更小,进度更高。

8. EfficientNet

研究网络设计时在depth, width, resolution上进行扩展的方式,以及之间的相互关系。可以取得更高的效率和准确率。

9. ResNet

VGG证明更深的网络层数是提高精度的有效手段,但是更深的网络极易导致梯度弥散,从而导致网络无法收敛。经测试,20层以上会随着层数增加收敛效果越来越差。ResNet可以很好的解决梯度消失的问题(其实是缓解,并不能真正解决),ResNet增加了shortcut连边。

10. ResNeXt

基于ResNet和Inception的split+transform+concate结合。但效果却比ResNet、Inception、Inception-ResNet效果都要好。可以使用group convolution。一般来说增加网络表达能力的途径有三种:1.增加网络深度,如从AlexNet到ResNet,但是实验结果表明由网络深度带来的提升越来越小;2.增加网络模块的宽度,但是宽度的增加必然带来指数级的参数规模提升,也非主流CNN设计;3.改善CNN网络结构设计,如Inception系列和ResNeXt等。且实验发现增加Cardinatity即一个block中所具有的相同分支的数目可以更好的提升模型表达能力。

11. DenseNet

DenseNet通过特征重用来大幅减少网络的参数量,又在一定程度上缓解了梯度消失问题。

12. SqueezeNet

提出了fire-module:squeeze层+expand层。Squeeze层就是1×1卷积,expand层用1×1和3×3分别卷积,然后concatenation。squeezeNet参数是alexnet的1/50,经过压缩之后是1/510,但是准确率和alexnet相当。

13. ShuffleNet系列

V1

通过分组卷积与1×1的逐点群卷积核来降低计算量,通过重组通道来丰富各个通道的信息。Xception和ResNeXt在小型网络模型中效率较低,因为大量的1×1卷积很耗资源,因此提出逐点群卷积来降低计算复杂度,但是使用逐点群卷积会有副作用,故在此基础上提出通道shuffle来帮助信息流通。虽然dw可以减少计算量和参数量,但是在低功耗设备上,与密集的操作相比,计算、存储访问的效率更差,故shufflenet上旨在bottleneck上使用深度卷积,尽可能减少开销。

V2

使神经网络更加高效的CNN网络结构设计准则:

输入通道数与输出通道数保持相等可以最小化内存访问成本

分组卷积中使用过多的分组会增加内存访问成本

网络结构太复杂(分支和基本单元过多)会降低网络的并行程度

element-wise的操作消耗也不可忽略

14. SENet

15. SKNet

更多人工智能领域前沿资讯,请关注我们的公众号,第一时间为您送达!!!

CNN网络结构的发展:从LeNet到EfficientNet相关推荐

  1. 收藏 | 一文遍览CNN网络结构的发展

    来源:人工智能AI技术本文约2600字,建议阅读8分钟 本文介绍了十五种经典的CNN网络结构. CNN基本部件介绍 1. 局部感受野 在图像中局部像素之间的联系较为紧密,而距离较远的像素联系相对较弱. ...

  2. CNN网络结构的发展

    经典网络结构 部分网络的pytorch实现github代码:CNN-nets 1. LeNet5 由两个卷积层,两个池化层,两个全连接层组成. 卷积核都是5×5,stride=1,池化层使用maxpo ...

  3. CNN网络结构发展演变:从LeNet到HRNet(一)

    个人经验总结博客,写的不好的地方还请各路大神指正,不喜勿喷.网络结构图基本都是引用的,如有雷同,实在抱歉,可在下方评论中留言是否删除. 我们知道CNN网络结构一直在更新迭代,卷积可以理解为:" ...

  4. CNN网络结构发展最全整理

    来源:人工智能AI技术 本文约2500字,建议阅读9分钟 本文为你整理CNN网络结构发展史. 作者丨zzq 来源丨https://zhuanlan.zhihu.com/p/68411179 CNN基本 ...

  5. CNN网络结构进化概述

    网络工程问题是深度学习中比较基础的问题,网络工程的难点在于,缺乏对深度神经网络的理论理解(即常说的黑盒模型),无法根据理论来设计网络结构,实际中更多的是不断的尝试,根据实验反馈出来的结果确定某一结构是 ...

  6. 【CNN】卷积神经网络(LeNet)是什么?如何实现LeNet?

    系列文章目录 第一章 深度学习 CNN中的卷积神经网络(LeNet) 目录 系列文章目录 文章目录 前言 一.卷积神经网络(LeNet)是什么? 二.LeNet的网络结构 三.实现LeNet模型 ​​ ...

  7. 有关CNN网络结构的总结

    从神经网络到卷积神经网络(CNN) 我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢? 其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如 ...

  8. CNN网络模型的发展概述

    写在开篇 这个系列主要介绍卷积神经网络模型(CNN)在发展进程中的重要的.有代表性的CNN模型的原理和实现.这第一篇文章简要介绍一下CNN发展进程中的几个关键节点(即经典CNN模型). 经典CNN网络 ...

  9. 从LeNet到EfficientNet:CNN的演变和特点总结

    这是一个了解CNN主流变化和特点的旅程. 卷积神经网络:构建基块 卷积神经网络(或简称CNN)是提取"可学习特征"的常用方法. CNN在深度学习和神经网络的发展与普及中发挥了重要作 ...

最新文章

  1. 在Windows系统上安装Ruby On Rails
  2. 怎么修改存储路径_Power Query数据位置变了?利用参数轻松解决源文件路径问题...
  3. 由 select * 引发的“惨案”
  4. 随机森林算法 python_Python实现的随机森林算法与简单总结
  5. 【报告分享】5G赋能中国智慧城市白皮书.pdf(附下载链接)
  6. MySQL数据类型和常用字段属性总结
  7. 如何有效实现软件的需求管理(1)
  8. javascript 面向对象的理解、数据属性的特征,基本数据类型、三大引用类型,方法
  9. 六石管理学:使用排除法解决问题
  10. oracle 11g函数包缓存,Oracle11新特性——PLSQL函数缓存结果(二)
  11. visio2010下载地址中文版本32位中文版本64位和激活密钥方法分享哦
  12. 运动重构(SFM)学习笔记一
  13. 前端+后端实现导入功能
  14. word文件做一半未响应_word文档未响应文件还没保存该怎么处理?
  15. 磨刀不误砍柴工-流程梳理
  16. ios 强制横屏大总结
  17. python的sysfont_pygame.font.SysFont游戏文字交互
  18. 企业债拟引入大数据强化信用约束
  19. https证书格式转换(cer转bks)
  20. Android动画渲染过程及原理(matrix),matrix动画,动画优化

热门文章

  1. 红包规则_“科普闯关100%夺红包”游戏规则升级了!速速来看!
  2. Linux学习(五)---开机、重启和用户登录注销
  3. 排序算法四:归并排序
  4. xmanager破解待验证
  5. pairplot 中参数hue的作用就是在图像中将输出的散点图按照hue指定的特征或标签的类别的颜色种类进行区分
  6. 如何在jupyter notebook上传文件夹
  7. 侯捷译Practical Java(含源码)
  8. 智源研究院发布 2020 年世界十大 AI 进展
  9. 《连线》| 李开复:新冠大流行将加速医疗AI革新
  10. 人声提取工具Spleeter安装教程(linux)