作者 | 李秋键

责编 | 李雪敬

头图 | CSDN下载自视觉中国

引言:基于前段时间我在CSDN上创作的文章“CylcleGAN人脸转卡通图”的不足,今天给大家分享一个更加完美的绘制卡通的项目“Learning to Cartoonize Using White-box Cartoon Representations”。

首先阐述下这个项目相对之前分享的卡通化的优势:

1、普遍适用性,相对于原来人脸转卡通而言,这个项目可以针对任意的图片进行卡通化转换,不再局限于必须是人脸图片或一定尺寸;

2、卡通化效果更好。

具体效果如下图可见:

其主要原理仍然是基于GAN网络,但主要三个白盒分别对图像的结构、表面和纹理进行处理,最后得到了优于其他方法的图像转化方法 CartoonGAN

而今天我们就将借助论文所分享的源代码,构建模型创建自己需要的人物运动。具体流程如下。

实验前的准备

首先我们使用的python版本是3.6.5所用到的模块如下:

argparse 模块用来定义命令行输入参数指令。

Utils 是将其中常用功能封装成为接口。

numpy 模块用来处理矩阵运算。

Tensorflow 模块创建模型网络,训练测试等。

tqdm 是显示循环的进度条的库。

网络模型的定义和训练

因为不同的卡通风格需要特定任务的假设或先验知识来开发对应的算法去分别处理。例如,一些卡通工作更关注全局色调,线条轮廓是次要问题。或是稀疏干净的颜色块在艺术表达中占据主导地位。但是针对不同的需求,常见模型无法有效的实现卡通化效果。

故在文章中主要通过分别处理表面、结构和纹理表示来解决这个问题:

(1)首先是网络层的定义:

1.1 定义resblock保证在res block的输入前后通道数发生变化时,可以保证shortcut和普通的output的channel一致,这样就能直接相加了。

def resblock(inputs, out_channel=32, name='resblock'):with tf.variable_scope(name):x = slim.convolution2d(inputs, out_channel, [3, 3], activation_fn=None, scope='conv1')x = tf.nn.leaky_relu(x)x = slim.convolution2d(x, out_channel, [3, 3], activation_fn=None, scope='conv2')return x + inputs

1.2 定义生成器函数:

def generator(inputs, channel=32, num_blocks=4, name='generator', reuse=False):with tf.variable_scope(name, reuse=reuse):x = slim.convolution2d(inputs, channel, [7, 7], activation_fn=None)x = tf.nn.leaky_relu(x)x = slim.convolution2d(x, channel*2, [3, 3], stride=2, activation_fn=None)x = slim.convolution2d(x, channel*2, [3, 3], activation_fn=None)x = tf.nn.leaky_relu(x)x = slim.convolution2d(x, channel*4, [3, 3], stride=2, activation_fn=None)x = slim.convolution2d(x, channel*4, [3, 3], activation_fn=None)x = tf.nn.leaky_relu(x)for idx in range(num_blocks):x = resblock(x, out_channel=channel*4, name='block_{}'.format(idx))x = slim.conv2d_transpose(x, channel*2, [3, 3], stride=2, activation_fn=None)x = slim.convolution2d(x, channel*2, [3, 3], activation_fn=None)x = tf.nn.leaky_relu(x)x = slim.conv2d_transpose(x, channel, [3, 3], stride=2, activation_fn=None)x = slim.convolution2d(x, channel, [3, 3], activation_fn=None)x = tf.nn.leaky_relu(x)x = slim.convolution2d(x, 3, [7, 7], activation_fn=None)#x = tf.clip_by_value(x, -0.999999, 0.999999)return x
def unet_generator(inputs, channel=32, num_blocks=4, name='generator', reuse=False):with tf.variable_scope(name, reuse=reuse):x0 = slim.convolution2d(inputs, channel, [7, 7], activation_fn=None)x0 = tf.nn.leaky_relu(x0)x1 = slim.convolution2d(x0, channel, [3, 3], stride=2, activation_fn=None)x1 = tf.nn.leaky_relu(x1)x1 = slim.convolution2d(x1, channel*2, [3, 3], activation_fn=None)x1 = tf.nn.leaky_relu(x1)x2 = slim.convolution2d(x1, channel*2, [3, 3], stride=2, activation_fn=None)x2 = tf.nn.leaky_relu(x2)x2 = slim.convolution2d(x2, channel*4, [3, 3], activation_fn=None)x2 = tf.nn.leaky_relu(x2)for idx in range(num_blocks):x2 = resblock(x2, out_channel=channel*4, name='block_{}'.format(idx))x2 = slim.convolution2d(x2, channel*2, [3, 3], activation_fn=None)x2 = tf.nn.leaky_relu(x2)h1, w1 = tf.shape(x2)[1], tf.shape(x2)[2]x3 = tf.image.resize_bilinear(x2, (h1*2, w1*2))x3 = slim.convolution2d(x3+x1, channel*2, [3, 3], activation_fn=None)x3 = tf.nn.leaky_relu(x3)x3 = slim.convolution2d(x3, channel, [3, 3], activation_fn=None)x3 = tf.nn.leaky_relu(x3)h2, w2 = tf.shape(x3)[1], tf.shape(x3)[2]x4 = tf.image.resize_bilinear(x3, (h2*2, w2*2))x4 = slim.convolution2d(x4+x0, channel, [3, 3], activation_fn=None)x4 = tf.nn.leaky_relu(x4)x4 = slim.convolution2d(x4, 3, [7, 7], activation_fn=None)#x4 = tf.clip_by_value(x4, -1, 1)return x4

1.3 表面结构等定义:

def disc_bn(x, scale=1, channel=32, is_training=True, name='discriminator', patch=True, reuse=False):with tf.variable_scope(name, reuse=reuse):for idx in range(3):x = slim.convolution2d(x, channel*2**idx, [3, 3], stride=2, activation_fn=None)x = slim.batch_norm(x, is_training=is_training, center=True, scale=True)x = tf.nn.leaky_relu(x)x = slim.convolution2d(x, channel*2**idx, [3, 3], activation_fn=None)x = slim.batch_norm(x, is_training=is_training, center=True, scale=True)x = tf.nn.leaky_relu(x)if patch == True:x = slim.convolution2d(x, 1, [1, 1], activation_fn=None)else:x = tf.reduce_mean(x, axis=[1, 2])x = slim.fully_connected(x, 1, activation_fn=None)return x
def disc_sn(x, scale=1, channel=32, patch=True, name='discriminator', reuse=False):with tf.variable_scope(name, reuse=reuse):for idx in range(3):x = layers.conv_spectral_norm(x, channel*2**idx, [3, 3], stride=2, name='conv{}_1'.format(idx))x = tf.nn.leaky_relu(x)x = layers.conv_spectral_norm(x, channel*2**idx, [3, 3], name='conv{}_2'.format(idx))x = tf.nn.leaky_relu(x)if patch == True:x = layers.conv_spectral_norm(x, 1, [1, 1], name='conv_out'.format(idx))else:x = tf.reduce_mean(x, axis=[1, 2])x = slim.fully_connected(x, 1, activation_fn=None)return x
def disc_ln(x, channel=32, is_training=True, name='discriminator', patch=True, reuse=False):with tf.variable_scope(name, reuse=reuse):for idx in range(3):x = slim.convolution2d(x, channel*2**idx, [3, 3], stride=2, activation_fn=None)x = tf.contrib.layers.layer_norm(x)x = tf.nn.leaky_relu(x)x = slim.convolution2d(x, channel*2**idx, [3, 3], activation_fn=None)x = tf.contrib.layers.layer_norm(x)x = tf.nn.leaky_relu(x)if patch == True:x = slim.convolution2d(x, 1, [1, 1], activation_fn=None)else:x = tf.reduce_mean(x, axis=[1, 2])x = slim.fully_connected(x, 1, activation_fn=None)return x

(2)模型的训练:

使用clip_by_value应用自适应着色在最后一层的网络中,因为它不是很稳定。为了稳定再现我们的结果,请使用power=1.0然后首先在network.py中注释clip_by_value函数。

def train(args):input_photo = tf.placeholder(tf.float32, [args.batch_size, args.patch_size, args.patch_size, 3])input_superpixel = tf.placeholder(tf.float32, [args.batch_size, args.patch_size, args.patch_size, 3])input_cartoon = tf.placeholder(tf.float32, [args.batch_size, args.patch_size, args.patch_size, 3])output = network.unet_generator(input_photo)output = guided_filter(input_photo, output, r=1)blur_fake = guided_filter(output, output, r=5, eps=2e-1)blur_cartoon = guided_filter(input_cartoon, input_cartoon, r=5, eps=2e-1)gray_fake, gray_cartoon = utils.color_shift(output, input_cartoon)d_loss_gray, g_loss_gray = loss.lsgan_loss(network.disc_sn, gray_cartoon, gray_fake, scale=1, patch=True, name='disc_gray')d_loss_blur, g_loss_blur = loss.lsgan_loss(network.disc_sn, blur_cartoon, blur_fake, scale=1, patch=True, name='disc_blur')vgg_model = loss.Vgg19('vgg19_no_fc.npy')vgg_photo = vgg_model.build_conv4_4(input_photo)vgg_output = vgg_model.build_conv4_4(output)vgg_superpixel = vgg_model.build_conv4_4(input_superpixel)h, w, c = vgg_photo.get_shape().as_list()[1:]photo_loss = tf.reduce_mean(tf.losses.absolute_difference(vgg_photo, vgg_output))/(h*w*c)superpixel_loss = tf.reduce_mean(tf.losses.absolute_difference\(vgg_superpixel, vgg_output))/(h*w*c)recon_loss = photo_loss + superpixel_losstv_loss = loss.total_variation_loss(output)g_loss_total = 1e4*tv_loss + 1e-1*g_loss_blur + g_loss_gray + 2e2*recon_lossd_loss_total = d_loss_blur + d_loss_grayall_vars = tf.trainable_variables()gene_vars = [var for var in all_vars if 'gene' in var.name]disc_vars = [var for var in all_vars if 'disc' in var.name] tf.summary.scalar('tv_loss', tv_loss)tf.summary.scalar('photo_loss', photo_loss)tf.summary.scalar('superpixel_loss', superpixel_loss)tf.summary.scalar('recon_loss', recon_loss)tf.summary.scalar('d_loss_gray', d_loss_gray)tf.summary.scalar('g_loss_gray', g_loss_gray)tf.summary.scalar('d_loss_blur', d_loss_blur)tf.summary.scalar('g_loss_blur', g_loss_blur)tf.summary.scalar('d_loss_total', d_loss_total)tf.summary.scalar('g_loss_total', g_loss_total)update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)with tf.control_dependencies(update_ops):g_optim = tf.train.AdamOptimizer(args.adv_train_lr, beta1=0.5, beta2=0.99)\.minimize(g_loss_total, var_list=gene_vars)d_optim = tf.train.AdamOptimizer(args.adv_train_lr, beta1=0.5, beta2=0.99)\.minimize(d_loss_total, var_list=disc_vars)gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_fraction)sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))train_writer = tf.summary.FileWriter(args.save_dir+'/train_log')summary_op = tf.summary.merge_all()saver = tf.train.Saver(var_list=gene_vars, max_to_keep=20)with tf.device('/device:GPU:0'):sess.run(tf.global_variables_initializer())saver.restore(sess, tf.train.latest_checkpoint('pretrain/saved_models'))face_photo_dir = 'dataset/photo_face'face_photo_list = utils.load_image_list(face_photo_dir)scenery_photo_dir = 'dataset/photo_scenery'scenery_photo_list = utils.load_image_list(scenery_photo_dir)face_cartoon_dir = 'dataset/cartoon_face'face_cartoon_list = utils.load_image_list(face_cartoon_dir)scenery_cartoon_dir = 'dataset/cartoon_scenery'scenery_cartoon_list = utils.load_image_list(scenery_cartoon_dir)for total_iter in tqdm(range(args.total_iter)):if np.mod(total_iter, 5) == 0: photo_batch = utils.next_batch(face_photo_list, args.batch_size)cartoon_batch = utils.next_batch(face_cartoon_list, args.batch_size)else:photo_batch = utils.next_batch(scenery_photo_list, args.batch_size)cartoon_batch = utils.next_batch(scenery_cartoon_list, args.batch_size)inter_out = sess.run(output, feed_dict={input_photo: photo_batch, input_superpixel: photo_batch,input_cartoon: cartoon_batch})if args.use_enhance:superpixel_batch = utils.selective_adacolor(inter_out, power=1.2)else:superpixel_batch = utils.simple_superpixel(inter_out, seg_num=200)_, g_loss, r_loss = sess.run([g_optim, g_loss_total, recon_loss],  feed_dict={input_photo: photo_batch, input_superpixel: superpixel_batch,input_cartoon: cartoon_batch})_, d_loss, train_info = sess.run([d_optim, d_loss_total, summary_op],  feed_dict={input_photo: photo_batch, input_superpixel: superpixel_batch,input_cartoon: cartoon_batch})train_writer.add_summary(train_info, total_iter)if np.mod(total_iter+1, 50) == 0:print('Iter: {}, d_loss: {}, g_loss: {}, recon_loss: {}'.\format(total_iter, d_loss, g_loss, r_loss))if np.mod(total_iter+1, 500 ) == 0:saver.save(sess, args.save_dir+'/saved_models/model', write_meta_graph=False, global_step=total_iter)photo_face = utils.next_batch(face_photo_list, args.batch_size)cartoon_face = utils.next_batch(face_cartoon_list, args.batch_size)photo_scenery = utils.next_batch(scenery_photo_list, args.batch_size)cartoon_scenery = utils.next_batch(scenery_cartoon_list, args.batch_size)result_face = sess.run(output, feed_dict={input_photo: photo_face, input_superpixel: photo_face,input_cartoon: cartoon_face})result_scenery = sess.run(output, feed_dict={input_photo: photo_scenery, input_superpixel: photo_scenery,input_cartoon: cartoon_scenery})utils.write_batch_image(result_face, args.save_dir+'/images', str(total_iter)+'_face_result.jpg', 4)utils.write_batch_image(photo_face, args.save_dir+'/images', str(total_iter)+'_face_photo.jpg', 4)utils.write_batch_image(result_scenery, args.save_dir+'/images', str(total_iter)+'_scenery_result.jpg', 4)utils.write_batch_image(photo_scenery, args.save_dir+'/images', str(total_iter)+'_scenery_photo.jpg', 4)

模型的测试和使用

(1)加载图片的尺寸自动处理和导向滤波定义:

def resize_crop(image):h, w, c = np.shape(image)if min(h, w) > 720:if h > w:h, w = int(720*h/w), 720else:h, w = 720, int(720*w/h)image = cv2.resize(image, (w, h),interpolation=cv2.INTER_AREA)h, w = (h//8)*8, (w//8)*8image = image[:h, :w, :]
return image
def tf_box_filter(x, r):k_size = int(2*r+1)ch = x.get_shape().as_list()[-1]weight = 1/(k_size**2)box_kernel = weight*np.ones((k_size, k_size, ch, 1))box_kernel = np.array(box_kernel).astype(np.float32)output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME')return output
def guided_filter(x, y, r, eps=1e-2):x_shape = tf.shape(x)#y_shape = tf.shape(y)N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r)mean_x = tf_box_filter(x, r) / Nmean_y = tf_box_filter(y, r) / Ncov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_yvar_x  = tf_box_filter(x * x, r) / N - mean_x * mean_xA = cov_xy / (var_x + eps)b = mean_y - A * mean_xmean_A = tf_box_filter(A, r) / Nmean_b = tf_box_filter(b, r) / Noutput = mean_A * x + mean_breturn output
def fast_guided_filter(lr_x, lr_y, hr_x, r=1, eps=1e-8):#assert lr_x.shape.ndims == 4 and lr_y.shape.ndims == 4 and hr_x.shape.ndims == 4lr_x_shape = tf.shape(lr_x)#lr_y_shape = tf.shape(lr_y)hr_x_shape = tf.shape(hr_x)N = tf_box_filter(tf.ones((1, lr_x_shape[1], lr_x_shape[2], 1), dtype=lr_x.dtype), r)mean_x = tf_box_filter(lr_x, r) / Nmean_y = tf_box_filter(lr_y, r) / Ncov_xy = tf_box_filter(lr_x * lr_y, r) / N - mean_x * mean_yvar_x  = tf_box_filter(lr_x * lr_x, r) / N - mean_x * mean_xA = cov_xy / (var_x + eps)b = mean_y - A * mean_xmean_A = tf.image.resize_images(A, hr_x_shape[1: 3])mean_b = tf.image.resize_images(b, hr_x_shape[1: 3])output = mean_A * hr_x + mean_breturn output

(2)卡通化函数定义:

def cartoonize(load_folder, save_folder, model_path):input_photo = tf.placeholder(tf.float32, [1, None, None, 3])network_out = network.unet_generator(input_photo)final_out = guided_filter.guided_filter(input_photo, network_out, r=1, eps=5e-3)all_vars = tf.trainable_variables()gene_vars = [var for var in all_vars if 'generator' in var.name]saver = tf.train.Saver(var_list=gene_vars)config = tf.ConfigProto()config.gpu_options.allow_growth = Truesess = tf.Session(config=config)sess.run(tf.global_variables_initializer())saver.restore(sess, tf.train.latest_checkpoint(model_path))name_list = os.listdir(load_folder)for name in tqdm(name_list):try:load_path = os.path.join(load_folder, name)save_path = os.path.join(save_folder, name)image = cv2.imread(load_path)image = resize_crop(image)batch_image = image.astype(np.float32)/127.5 - 1batch_image = np.expand_dims(batch_image, axis=0)output = sess.run(final_out, feed_dict={input_photo: batch_image})output = (np.squeeze(output)+1)*127.5output = np.clip(output, 0, 255).astype(np.uint8)cv2.imwrite(save_path, output)except:print('cartoonize {} failed'.format(load_path))

(3)模型调用

model_path = 'saved_models'load_folder = 'test_images'save_folder = 'cartoonized_images'if not os.path.exists(save_folder):os.mkdir(save_folder)
cartoonize(load_folder, save_folder, model_path)

(4)训练代码的使用:

test_code文件夹中运行python cartoonize.py。生成图片在cartoonized_images文件夹里,效果如下:

总结

将输入图像通过导向滤波器处理,得到表面表示的结果,然后通过超像素处理,得到结构表示的结果,通过随机色彩变幻得到纹理表示的结果,卡通图像也就是做这样的处理。随后将GAN生成器产生的fake_image分别于上述表示结果做损失。其中纹理表示与表面表示通过判别器得到损失,fake_image的结构表示与fake_image,输入图像与fake_image分别通过vgg19网络抽取特征,进行损失的计算。

完整代码链接:https://pan.baidu.com/s/10YklnSRIw_mc6W4ovlP3uw

提取码:pluq

作者简介:

李秋键,CSDN博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap竞赛获奖等。

更多精彩推荐
  • 仅用 4 小时,吃透“百度太行”背后硬科技!

  • OpenCV 实现视频稳流,附Python与C++代码!| 防抖技术

  • 英伟达收购,ARM也要变美国公司,国产芯出路几何?

  • 大数据杀熟行为10月1日起明令禁止;阿里一号工程“犀牛制造”正式亮相;iOS 14 正式版发布 | 极客头条

  • 没有 5G 版 iPhone 的苹果秋季发布会,发布了些什么?

Python让你成为AI 绘画大师,简直太惊艳了!(附代码))相关推荐

  1. AI绘画到底有多惊艳,看了这组照片后真正自叹不如

    AI绘画现在有多火,已不必言说,相信很多的人都知道并且用过,但AI绘画出来的作品,究竟有多惊艳,却是智者见智,仁者见仁. 但是,即使曾经持有坚定怀疑态度的人,在看了这组漫画之后,相应也会有所改观. 图 ...

  2. Python让你成为AI 绘画大师,简直太惊艳了!(附代码)

    作者 | 李秋键 责编 | 李雪敬 头图 | CSDN下载自视觉中国 引言:基于前段时间我在CSDN上创作的文章"CylcleGAN人脸转卡通图"的不足,今天给大家分享一个更加完美 ...

  3. python ai取名_Python让你成为AI 绘画大师,简直太惊艳了!(附代码)

    作者 | 李秋键 责编 | 李雪敬 头图 | CSDN下载自视觉中国 引言:基于前段时间我在CSDN上创作的文章"CylcleGAN人脸转卡通图"的不足,今天给大家分享一个更加完美 ...

  4. 可视化实战,Python绘制出来的数据大屏真的太惊艳了!!

    今天我们在进行一个Python数据可视化的实战练习,用到的模块叫做Panel,我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作,而本地需要用到的数据集,可在kaggle上面获取 https: ...

  5. 2018全球人工智能技术大会:AI做什么,才能惊艳到你?

    <倚天屠龙记>中,峨眉掌门斗敌不过,便使了倚天剑,寄希望于用天下最具杀伤力的兵器给自己战力多一份加成.如今,在各个行业的力求IT可以更多赋能企业创新核心的问题上,AI技术正在扮演倚天剑的角 ...

  6. 【邢不行|量化小讲堂系列46-实战篇】用Python验证A股名言:跳空必回补...吗?【附代码】

    引言: 邢不行的系列帖子"量化小讲堂",通过实际案例教初学者使用python进行量化投资,了解行业研究方向,希望能对大家有帮助. [历史文章汇总]请点击此处 [必读文章]EOS期现 ...

  7. 图像处理/计算机视觉/python环境下/如何用四种不同滤波器处理噪声【附代码、亲测有效】

    计算机视觉实操之图像处理 一.问题描述 二.效果图 三.代码附录 四.相关链接 一.问题描述 向图片中分别加入椒盐噪声.高斯噪声,使用四种不同的滤波器观察图片的处理效果(算术均值滤波.几何均值滤波 . ...

  8. 用python写一个有AI的斗地主游戏(二)——简述后端代码和思路

    源码请看我的Github页面. 这是我一个课程的学术项目,请不要抄袭,引用时请注明出处. 本专栏系列旨在帮助小白从零开始开发一个项目,同时分享自己写代码时的感想. 请大佬们为我的拙见留情,有不规范之处 ...

  9. 全球首个AI女主播上岗了!太惊艳了!

    来源:水木然 摘要:前不久,全球首个AI女主播诞生的消息走红网络!刚刚,这位AI女主播今天正式上岗了! 是不是非常惊艳? 如果不是专门解释,她极有可能被为是真人! 这位全球首个AI女主播的上岗,吸引了 ...

最新文章

  1. 别光发Paper,搞点实际问题
  2. 大智慧数据文件python_Python 自动化测试(四):数据驱动
  3. hdu3622 二分+2sat
  4. POJ3277(矩形切割)
  5. 华为云hcip认证试题_首信AAA认证计费系统通过华为云兼容性认证,成为华为认证级ISV伙伴...
  6. svm算法原理_机器学习——分类算法(1)
  7. SDNU 1170.津津的储蓄计划
  8. JS学习总结(3)——运算符/字符串
  9. java io中file类_java中IO常见的IO流和file类理论总结
  10. 十行代码训练sklearn七种分类算法
  11. sql-插入当前时间
  12. 商城商品的知识图谱构建
  13. python 直方图匹配_Python OpenCV 直方图匹配
  14. vt功能对计算机有影响吗,电脑开vt有什么坏处
  15. java 锟斤 解决乱码_java eclipse 开发中文乱码锟斤拷小锟斤拷锟
  16. PyTorch学习笔记
  17. RGB(三色)灯配置常用颜色数据,用法讲解,基于C语言的程序讲解,七彩渐变程序讲解
  18. js实现html搜索关键词高亮显示(标红)
  19. U盘安装ubuntu 时候无法 安装 grub 到磁盘
  20. 鲜为人知的大小端问题

热门文章

  1. 分析PHP中单双引号的误区和双引号小隐患
  2. QQ2012 Under Ubuntu
  3. memcached图形界面的监控
  4. 医院数据中心机房建设资料汇总(31篇)
  5. 基于java+jdbc+servlet+jsp实现图书商城
  6. 为什么要读源代码,如何阅读源代码
  7. linux删除项目命令,项目2 Linux基本命令
  8. 自动驾驶技术现状与需求分析
  9. 论文中的绘图软件大总结 ---自己感想:当你拼命寻找向上的扶梯时,但也要先不让自己恐高
  10. Python中的变量以及赋值语句