相似图片搜索的原理(二)(转)
http://www.ruanyifeng.com/blog/2013/03/similar_image_search_part_ii.html
作者: 阮一峰
日期: 2013年3月31日
二年前,我写了《相似图片搜索的原理》,介绍了一种最简单的实现方法。
昨天,我在isnowfy的网站看到,还有其他两种方法也很简单,这里做一些笔记。
一、颜色分布法
每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。
任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。
如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。
任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。
上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, ..., 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫"指纹"。
于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。
二、内容特征法
除了颜色构成,还可以从比较图片内容的相似性入手。
首先,将原图转成一张较小的灰度图片,假定为50x50像素。然后,确定一个阈值,将灰度图片转成黑白图片。
如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阈值,正确呈现照片中的轮廓?
显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的"类内差异最小"(minimizing the intra-class variance),或者"类间差异最大"(maximizing the inter-class variance),那么这个值就是理想的阈值。
1979年,日本学者大津展之证明了,"类内差异最小"与"类间差异最大"是同一件事,即对应同一个阈值。他提出一种简单的算法,可以求出这个阈值,这被称为"大津法"(Otsu's method)。下面就是他的计算方法。
假定一张图片共有n个像素,其中灰度值小于阈值的像素为 n1 个,大于等于阈值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。
w1 = n1 / n
w2 = n2 / n
再假定,所有灰度值小于阈值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阈值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到
类内差异 = w1(σ1的平方) + w2(σ2的平方)
类间差异 = w1w2(μ1-μ2)^2
可以证明,这两个式子是等价的:得到"类内差异"的最小值,等同于得到"类间差异"的最大值。不过,从计算难度看,后者的计算要容易一些。
下一步用"穷举法",将阈值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得"类内差异最小"或"类间差异最大"的那个值,就是最终的阈值。具体的实例和Java算法,请看这里。
有了50x50像素的黑白缩略图,就等于有了一个50x50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。
两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用"异或运算"实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行"异或运算",结果中的1越少,就是越相似的图片。
(完)
转载于:https://www.cnblogs.com/bnuvincent/p/4857866.html
相似图片搜索的原理(二)(转)相关推荐
- 以图搜图 相似图片搜索的原理(二)
转自:http://www.ruanyifeng.com/blog/2013/03/similar_image_search_part_ii.html 二年前,我写了<相似图片搜索的原理> ...
- 相似图片搜索的原理(二)
转自:http://www.ruanyifeng.com/blog/2013/03/similar_image_search_part_ii.html 二年前,我写了<相似图片搜索的原理> ...
- Google 图片搜索的原理是什么?
Google 图片搜索的原理是什么? 1 条评论 分享 按投票排序按时间排序 18 个回答 389赞同 反对,不会显示你的姓名 知乎用户,安全行业 XsXs.知乎用户.知乎用户 等人赞同 针对这个问题 ...
- 简单的相似图片搜索的原理
FROM:1) http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html 2) http://www. ...
- 相似图片搜索的原理(转)
http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html 作者: 阮一峰 日期: 2011年7月21日 ...
- 相似图片搜索的原理(1)
[原文链接] 上个月,Google把"相似图片搜索"正式放上了首页. 你可以用一张图片,搜索互联网上所有与它相似的图片.点击搜索框中照相机的图标. 一个对话框会出现. 你输入网片的 ...
- 以图搜图 相似图片搜索的原理(一)
转自:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html 上个月,Google把"相似 ...
- 相似图片搜索的原理(一)
之前毕业论文做的是图片检索相关研究,当时看到了阮哥的博文,对入门很有指导意义,现在把他的文收藏到自己博客,呵呵..... 上个月,Google把"相似图片搜索"正式放上了首页. 你 ...
- [图像识别]相似图片搜索的原理
你可以用一张图片,搜索互联网上所有与它相似的图片.点击搜索框中照相机的图标. 一个对话框会出现. 你输入网片的网址,或者直接上传图片,Google就会找出与其相似的图片.下面这张图片是美国女演员Aly ...
- 以图找图:相似图片搜索的原理
来源: 阮一峰 你可以用一张图片,搜索互联网上所有与它相似的图片.点击搜索框中照相机的图标. 一个对话框会出现. 你输入网片的网址,或者直接上传图片,Google就会找出与其相似的图片.下面这张图片是 ...
最新文章
- python测试程序的qps和响应时间代码_Python并发请求下限制QPS(每秒查询率)的实现代码...
- python使用matplotlib可视化、移除可视化图像坐标轴的刻度线和标签( remove the default axis ticks and labels)
- 汇编 debug调试
- P1875 佳佳的魔法药水 (最短路,DP)
- 高度平衡二叉树的构建_平衡二叉树建立及其增删改查(JAVA)
- 指数型组织形成的 9 大驱动因素
- block介绍(四)揭开神秘面纱(下)
- Chainlink预言机正式集成至币安智能链
- Powershell - 获取OS版本信息和catpion信息
- web1:http协议简介和用netassist和py程序当http服务器
- 《算法导论》第四版 电子版 全网第一时间发布eBookhub
- Mac安装jdk并配置环境变量
- 企业认证CMMI都需要那些流程?
- 免费的自媒体原创度检测工具有哪些?快速帮你提高系统推荐
- VB6.0视频教程78集,入门视频教程,基础够了(基础篇)
- 锐捷客户端的默认网关跟ipv4的网关不一样
- html将图片裁剪成圆形,zrender将一张图片裁剪为圆形
- RecyclerView点击某个条目保持选中
- QLabel实现超链接,设置超链接颜色,去掉超链接下划线方法
- 资源小屋(更新ing.......)