来源:探臻科技评论

人工智能作为21世纪最具有影响力的技术,正在包括诸如机器人、语言识别、图像识别、自然语言处理等诸多领域发挥着重要作用。脑科学被誉为“人类科学最后的前沿”,认识脑的奥秘是对人类的终极挑战。而更重要的是,脑科学的发展将推动人工智能科学从感知人工智能到认知人工智能的跨越。

4月28日晚,戴琼海院士做客第一期“探臻论坛”,以线上方式为大家带来了一场题为“搭建脑科学与人工智能的桥梁”的精彩讲座。

嘉宾介绍

戴琼海,中国工程院院士,中国人工智能学会理事长,清华大学自动化系教授,清华大学生命科学学院兼职教授,清华大学脑与认知科学研究院院长。国家自然科学基金委杰出青年基金获得者,长江特聘教授。主持多项国家基金和国家科技攻关项目。曾获国家技术发明一等奖和二等奖各一项,国家科技进步二等奖一项。

目前正在承担国家重大仪器项目:多维多尺度计算摄像仪器,旨在提供从亚细胞、组织到器官的多尺度动态观测数据,揭示神经系统结构和功能等脑科学规律,为创建新一代人工智能提供支撑。

核心内容

1.科研从失败做起。

科研的实际过程是充满失败的,一系列在无数次失败后才成功的故事,启示我们失败通往成功的道路是螺旋式的,面对失败要保持恒心毅力,不断总结从失败中吸取经验。

2.什么是认知科学?

认知科学是一门对心智及其过程进行多学科研究的科学。如何对心智及其过程进行准确而全面的观察是认知科学的基础,同样是巨大的挑战。认知科学包含六大研究领域:心理学,哲学,语言学,人类学,人工智能,神经科学。

3.脑成像技术的发展与困境

以观察为出发点,脑成像成为了认知科学的一个重要工具。通过脑成像,可以记录下脑在认知过程中发生的变化,从而直接揭示认知的奥秘。但是由于细胞间错综复杂的连接关系,我们不能进一步从微观、介观、宏观层面简单理解认知过程,导致认知科学遇到发展瓶颈。

4.生命科学成像仪器RUSH-I的研发

为了突破现阶段脑科学观察的瓶颈,大视场、高分辨显微镜的研发是现阶段的主要任务。清华大学牵头开发研制了超宽、超分、超快的显微镜仪器生命科学成像仪器RUSH-I。RUSH-I是多维多尺度高分辨计算摄像仪器,可以全脑尺度下观察到细胞运动,为从亚细胞、细胞、组织到器官结构与功能活体研究提供了新工具。

5. 光电技术在人工智能中的机遇与挑战

现在的人工智能复杂度急剧攀升、算力需求激增、前算力与能耗大成为人工智能发展的瓶颈,因此需要寻求光电结合的方式进行计算。利用光电技术颠覆传统计算范式,从而提升算力。再以清华人工智能(T-AI)结合新一代认知智能,实现最后软硬件结合完成整个光电智能计算系统。

6. 戴琼海老师对同学们的建议

戴琼海老师也给同学们分享了做研究的经验和建议,希望同学们做研究要紧密结合国际前沿和国家重大需求,做学问要记住问题驱使是原创,方法驱使是改进,并且学会用理科的思维思考问题去攻克方式实践,更重要是的学会哲学表达。

讲座实录

科学研究从失败做起

2016年2月11日,爱因斯坦于100年前提出的引力波概念被证实,其是由两个黑洞的合并过程而产生的强烈的引力波信号。引力波的论证史是一个曲折的过程,爱因斯坦经过提出概念、修正概念、遭遇拒稿、发现并修正论文错误等多次失败之后,才最终将“论引力波”研究成果发表,而更艰难的引力波的实验验证则经历了100余年的历史。无独有偶,居里夫人发现镭的过程也是极其复杂的,在连续工作4年依然一无所获后,居里夫人发现,也许镭并不像想象的那样是一团晶体,而后其发现器皿中不起眼的污迹便是镭。所以由此可以看出,失败是经常的,成功只是一瞬间的事情。X射线的发现同样是伦琴在多次实验失败的基础上,不断改进实验方法在偶然间发现的,这发现的过程也少不了伦琴能够敢于打破旧观念,提出新概念的创新精神。

这些故事说明,失败通往成功的道路是螺旋式的,所以同学们在做研究当中会碰到很多失败,在这当中我们一定要有兴趣,而往往我们会被失败打败,所以我们一定要有恒心有毅力。兴趣是暂时的,毅力是永久的,既然选择某一方向,要学会在复杂的问题中找到自己成功的道路。失败是对追求者的考验,成功是对追求者的回报。

认知科学概述

1969年,英国人莱特希尔爵士为国会提供报告,全盘否定人工智能的发展,人工智能陷入寒冬。为了改变人工智能发展窘境,认知科学之父朗格特-希金斯提出了包括人工智能、心理学、数学、人类学等学科在内的一个综合学科概念,称之为认知科学。按照现代定义,认知科学是一门对心智及其过程进行多学科研究的科学。如何对心智及其过程进行准确而全面的观察是认知科学的基础,但同样是巨大的挑战。认知科学包含六大研究领域:心理学,人类的高级心理过程;哲学,现代科学的方式与途径研究思维、意识等;语言学:语言如何与认知交互、如何形成思想等;人类学,使用认知科学的研究方法和理论;人工智能,认知模型的计算机实现;神经科学,认知的生物学(神经层面)原理。

介观尺度观察与脑成像

认知科学是基于假设完成的,但在认知科学发展过程中多次出现先前的假设被后期实验推翻的情况,这导致大家对认知科学产生了疑惑。而脑成像技术的发展则为洞悉大脑的认知过程提供了可能。以观察为出发点,脑成像成为了认知科学的一个重要工具。通过脑成像,可以记录下脑在认知过程中发生的变化,从而直接揭示认知的奥秘。2012年,马萨诸塞总医院在science发文,发现了脑联结的规律网格结构,与电路板阵列类似。此网格结构的发现让我们初探了大脑的认知过程,同时带来了新的科学挑战。

电路板阵列

由于不能准确观测细胞间的网格结构是如何错综复杂进行联结的,导致我们不能在微观、介观和宏观层面理解神经细胞的工作原理、信息处理方式和协作认知机制,这导致脑科学在2015年左右陷入短暂的低谷。在脑成像观察时,必须兼顾大脑的微观细胞层面、介观环路层面与宏观全脑层面,才能实现对认知过程的准确观察。这就需要研发大观测视场、高观测分辨率的仪器,进一步了解细胞与细胞之间的关系。

新皮质中的网格结构

脑科学—人类最后的科学

什么是脑科学

人类大脑重约3磅(1.4公斤),由上千亿个神经元组成,每个神经元又包含1000多个分支,共同构成了庞大精细的神经网络。它一点都不比无穷宇宙简单,可以说人类大脑的神经科学 (Neuroscience) 是“人类科学最后的前沿”,认识脑的奥秘是对人类的终极挑战。脑科学的发展,对脑疾病的防治、人工智能产业的发展有着巨大的推动作用。

脑与全身的关系主要表现在中枢神经系统通过遍布于人体,传出神经信号与器官建立连接,发挥对组织器官保护机制。而器官通过免疫系统反馈组织状态,也是脑与全身协调的重要表现。

世界各国的脑计划

世界各国目前正在积极实行脑计划,其中美国和欧盟起步较早。2013年4月2日,美国时任总统奥巴马宣布启动“通过推动创新型神经技术开展大脑研究”计划;2013年10月,由15个欧洲国家参与发起欧盟脑计划,但目前已宣告失败,并准备重新开始;2014年,由日本科学家发起神经科学研究计划;2016年2月澳大利亚脑联盟正式成立;中国的脑计划以脑认知功能的解析和技术平台为一体,形成认知障碍相关重大脑疾病诊治和类脑计算与脑机智能技术为两翼的“一体两翼”布局,具体研究布局还在准备中。当前,各个国家围绕统计大脑细胞类型、建立大脑结构图、开发操作神经回路工具、了解神经细胞与个体行为的联系四个方面分别开展研究。

生命科学成像仪器RUSH-I

根据视场和分辨率,通过将显微镜技术映射到二维坐标系中可划分为四个部分,现阶段的主要工作是攻克大视场、高分辨显微镜中的技术难题,搜寻这些技术对新一代人工智能的推动作用。清华大学联合浙江大学、中科院上海光学精密仪器机械研究所和其他三家单位一起共同研制目标是为超宽、超分、超快的显微镜仪器。

仪器研制思路创新与矛盾分析

视场和分辨率本身是一对矛盾,视场越大伴随着分辨率就越低。因此,期望在1 cm2的视场里看到一只鼠的全部脑及其细胞,如果以传统方式,通过加工曲面解决视场问题是难以实现的,其加工难度与视场正相关。另外,面对极大的数据量,相机的带宽、链路传输的带宽、存储写入的带宽都面临极大压力。最后,结合以前做人工智能所积累的经验(无损信息编码采集、稀疏集结构学习、信息重构)设计出适应相面弯曲和计算重构图像的新方式来解决此问题。经过两年时间,课题组共同努力研发出生命科学成像仪器RUSH-I,实现了拍得快、存得下的效果。

生命科学成像仪器RUSH-I

生命科学成像仪器RUSH-I是多维多尺度高分辨计算摄像仪器,可以全脑尺度下观察到细胞运动,比如实时监测实验所用的免疫细胞运动。并首次对音乐刺激下的清醒小鼠全脑皮层神经网络活动进行高速成像,展示出小鼠全脑皮层、亚细胞级、结构与功能统一 。

RUSH-I为从亚细胞、细胞、组织到器官结构与功能活体研究提供了新工具,并得到国际上脑科学家们的广泛认同。利用该仪器所做的相关工作发表已经发表在多篇高水平期刊上(如Nature Photonics, Nature Methods, Nature Neuroscience)。

第二代RUSH-I仪器的研制

从2017年开始着手研究,并于2018年1月搭建完成的第二代仪器RUSH-II,具有400 nm分辨率,准备观察大鼠和猕猴的脑部。达到的技术指标为,视场大小达到1 cm2;分辨率达到0.4 μm;每帧图像达到3.36亿像素;成像帧率达到30帧/秒;数据通量达到100.8亿像素/秒,是当前国际上视场最大、数据通量最高的高分辨率光学显微镜。

新一代认知智能

当前的国际最为流行的四大神经网络分别为:卷积神经网络、循环神经网络、脉冲神经网络、图神经网络。但如何实现高能效、可解释、易扩展、具有长短期记忆的新一代认知智能成为发展难题。美国情报系统的Intelligence Advanced Research Projects Activity(IARPA)部门启动了皮质网络机器智能MICrONS计划 (2016),项目经费1亿美金,被称为阿波罗脑计划。其绘制出啮齿动物1 mm2大脑皮层中的所有神经回路(记录并测量10万个神经元的活动和连接),研究大脑计算方式,并运用这些研究发现更好地影响机器学习和人工智能算法。由哈佛大学、卡耐基梅隆大学和贝勒医学院的研究团队牵头,对人工智能发展进行探索。

纵观人工智能的发展,经历了从符号主义到联结主义的发展演变。而自2016年之后,受脑科学和心理学等学科的启发,人工智能正在向生物智能的转变。因此,下一代人工智能将要实现人工智能从感知决策与控制到认知决策与控制的转变。

光电技术在人工智能中的需求与机遇

人工智能的需求与瓶颈

现在的人工智能面临复杂度急剧攀升(比当前超过30万倍)、算力需求激增、摩尔定律逐步失效等问题。当前,算力与能耗成为人工智能颠覆性发展的瓶颈。要寻求以光三维传播来代替硅基的电的一维计算,对材料的要求较高,因此需要寻求光电结合的方式进行过渡,并且,计算媒介的改变会带来颠覆性的变化。

发展光电技术的历史机遇

需求与瓶颈:现有存算分离的电子计算范式无法满足人工智能技术的发展需要;

理论与算力:已有光学神经网络的理论模型必将推动人工智能算力跨越式发展;材料与工艺:当前微纳光电材料与工艺取得的突破为光电集成研发提供了条件;

光电技术引领颠覆性技术革命

当前我们要利用光电技术颠覆传统计算范式,研制采存算一体的光电计算系统,从而提升算力。对比之下,光电技术的算例高达1014 MAC/s/cm2,而电子技术的算力仅为1011 MAC/s/cm2。并且功耗提升也会达到百万倍之多,光电技术功耗为4×1012 MAC/J,电子3×106 GMAC/W/s。清华大学在光电上的研究与麻省理工学院和剑桥大学、明斯特大学并驾齐驱,且我校独特的衍射神经网络和其他方案有所不同。

光电智能技术的路线规划与清华方案

从光电技术出发,以清华人工智能(T-AI)结合新一代认知智能,最后进行软硬件结合,建立整个光电智能计算系统。目前,研究中心具有3-5个国家重点实验室,通过大企业联盟集成攻关发挥研发优势,以满足国家重大需求、面向国民经济主战场的原理机样。

目前,清华大学脑认知院主要集中在突破神经环路动态成像技术、揭示神经血管的耦合机制、解决脑免疫的百年难题与从脑认知到脑联网的颠覆性突破四大科学研究上。当下,我们结合工作基础,制定清华方案,所做的工作主要包括脑观测、脑健康、脑模拟与脑认知,体现学科之间的交叉融合,实现产学研创新。

戴琼海老师对同学们的建议

论坛最后,戴琼海老师也给同学们分享了做研究的经验和建议,希望同学们做研究要紧密结合国际前沿和国家重大需求,做学问要记住问题驱使是原创,方法驱使是改进,并且学会用理科的思维思考问题去攻克方式实践,更重要是的学会哲学表达。

研究者可分为三类,分别是牛人、高人和神人,他们分别对应着自己的特质:做一研究做到极致、做别人做不到的事和做别人想不到的事。

同时,要胸怀宽,境界高,眼光远,不要让战术的勤奋掩盖了战略上的懒惰。正如德鲁克所述,战略不是研究我们未来做什么,而是研究我们今天做什么才有未来。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

探臻实录 | 戴琼海:搭建脑科学与人工智能的桥梁相关推荐

  1. 院士戴琼海:脑科学走向人工智能的重要路径

    2019年11月1日,刚刚当选人工智能学会理事长的中国工程院院士.清华大学自动化系教授戴琼海在北京智源大会"脑科学与AI专题论坛"上发表了题为<脑与认知科学>的主题演讲 ...

  2. 戴琼海:人工智能的几点思考

    7月25日-26日,在中国科学技术协会.中国科学院.中国工程院.浙江省人民政府.杭州市人民政府.浙江省人工智能发展专家委员会指导下,由中国人工智能学会.杭州市余杭区人民政府主办,浙江杭州未来科技城管理 ...

  3. 戴琼海院士:5年后大模型将成为AI的操作系统!

    Datawhale干货 作者:戴海琼院士,编辑:中国电子报 4月20日,由赛迪顾问有限公司主办的2023 IT市场年会在京召开.会上,中国工程院院士戴琼海发表演讲.戴琼海表示,拓宽数据边界.推动算法创 ...

  4. 脑科学助力人工智能,离不开大数据

    2019独角兽企业重金招聘Python工程师标准>>> 小白鼠在听音乐时,大脑活动是什么样的?在17日举办的以"大数据应用与创新"为主题的中国科技传播论坛上,音乐 ...

  5. 实录丨戴琼海:深度学习遭遇瓶颈,全脑观测启发下一代AI算法

    2020-09-03 20:03:00 目前我们还无法精细到神经元级别的观测,只能从功能层面理解大脑,但这些成果也启发了很多经典的人工智能算法,例如卷积神经网络启发自猫脑视觉感受野研究,胶囊网络启发自 ...

  6. 演讲实录丨戴琼海院士《人工智能:算法·算力·交互》

    2020-09-08 21:32:37 8月29日至30日,由中国科学技术协会.中国科学院.南京市人民政府为指导单位,中国人工智能学会.南京市建邺区人民政府.江苏省科学技术协会主办的主题为" ...

  7. 戴琼海院士:从脑科学到人工智能

    来源:中国人工智能协会 本文约4000字,建议阅读10分钟. 本文为你介绍了第八届中国智能产业高峰论坛11 月17-18日论坛这两天的会议的精彩报告. 此次小编为大家整理的是来自中国工程院院士,清华大 ...

  8. 戴琼海院士:国际经济形势下滑,为何全球却在大力发展人工智能?

    1970年,修女玛丽·尤肯达给美国航空航天局马绍尔太空航行中心的科学副总监恩斯特·史图林格博士写了一封信,在信中她问道:目前地球上还有很多孩子吃不上饭,你们怎么舍得为远在火星的项目花费数十亿美元? 史 ...

  9. 戴琼海:深度学习遭遇瓶颈,全脑观测启发下一代AI算法

    2020-09-03 02:24:51 作者 | 青暮.陈彩娴 编辑 | 陈彩娴 目前我们还无法精细到神经元级别的观测,只能从功能层面理解大脑,但这些成果也启发了很多经典的人工智能算法,例如卷积神经网 ...

最新文章

  1. ubuntu和windows系统双系统的开机选项界面有很多无关选项
  2. Elasticsearch java api(五) Bulk批量索引
  3. 提交Form表单,submit之前做js判断处理
  4. 郴州郴锦机器人_减税降费宣传走进郴州市民营企业高质量发展专题培训班
  5. ubuntu+anaconda+tensorflow 及相关问题
  6. QString包含中文时与char *转换
  7. java技术栈有哪些_2020 年 Java 程序员应该学习掌握哪些技术?
  8. info - 阅读 info 文档
  9. 摘抄:敏捷测试自动化策略
  10. 多开2000人QQ群技术是骗人的,完全不可行,你当腾讯技术是菜鸟?
  11. STC 32位8051单片机开发实例教程 二 I/O工作模式及其配置
  12. maven项目配置私服
  13. 推荐使用Ubutun16.04亮度调节工具
  14. 已解决ModuleNotFoundError: No module named ‘frontend‘
  15. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
  16. 小新air15为啥没人买_联想小新潮7000和小新air15对比 哪个更值得买
  17. SDWAN组网典型应用
  18. UE4学习杂项总结一
  19. c语言中int下小数求余大数,Sicily1020-大数求余算法及优化
  20. 求s=a+aa+aaa+aaaa+aa...a的值

热门文章

  1. 一个简单的Makefile
  2. 独家 | 由第一原理导出卷积
  3. 数据蒋堂 | 为什么我们需要C程序员
  4. 教你用机器学习匹配导师 !(附代码)
  5. AgileGAN130毫秒生成动漫肖像!LeCun点赞:超越梵高
  6. 华人首位!清华学子尤洋 荣升新加坡国立大学“校长青年教授”
  7. 官宣!推动深圳大学、南科大创建“双一流”!
  8. 图像/视频去噪算法资源集锦
  9. 多模态大模型——通用人工智能路径的探索
  10. 让炼丹师不再为数据集发愁,这家公司建了一个AI公开数据集平台